Что излучает инфракрасное излучение. Польза инфракрасных лучей для человека. Но почему растения получаются такими яркими

Существуют разные источники инфракрасного излучения. В настоящее время они находятся в бытовой технике, системах автоматики, охраны, а также используются при сушке промышленных изделий. Источники инфракрасного света при правильной эксплуатации не влияют на человеческий организм, поэтому изделия пользуются огромной популярностью.

История открытия

На протяжении многих веков изучением природы и действия света занимались выдающиеся умы.

Инфракрасный свет был обнаружен в начале 19 века с помощью исследований астронома В. Гершеля. Суть его заключалась в изучении нагревательных способностей различных солнечных участков. К ним ученый подносил термометр и следил за возрастанием температуры. Данный процесс наблюдался, когда прибор коснулся красной границы. В. Гершель сделал вывод, что существует некое излучение, которое нельзя увидеть зрительно, но возможно определить с помощью термометра.

Инфракрасные лучи: применение

Они широко распространены в жизни человека и нашли свое применение в разных сферах:

  • Военное дело. Современные ракеты и боеголовки, способные самостоятельно наводиться на цель, снабжены которые являются результатом применения инфракрасного излучения.
  • Термография. Инфракрасное излучение применяют для изучения перегретых или переохлажденных местностей. Инфракрасные снимки также применяются в астрономии для обнаружения небесных тел.
  • Быт. Большую популярность получили , функционирование которых направлено на нагрев предметов интерьера и стен. Затем они отдают тепло пространству.
  • Дистанционное управление. Все существующие пульты для телевизора, печей, кондиционеров и т.д. снабжены инфракрасными лучами.
  • В медицине инфракрасными лучами проводят лечение и профилактику различных заболеваний.

Рассмотрим, где применяются данные элементы.

Инфракрасные газовые горелки

Инфракрасная горелка служит для обогрева различных помещений.

Сначала она использовалась для теплиц, гаражей (то есть нежилых помещений). Однако современные технологии позволили применять ее даже в квартирах. В народе такую горелку называют прибором солнца, так как во включенном состоянии рабочая поверхность оборудования напоминает солнечный свет. Со временем такие устройства заменили масляные обогреватели и конвекторы.

Главные особенности

Инфракрасная горелка отличается от других приборов способом нагрева. Передача теплоты осуществляется за счет которые не заметны для человека. Такая особенность позволяет теплу проникать не только в воздух, но и на предметы интерьера, которые в дальнейшем также повышают температуру в помещении. Инфракрасный излучатель не сушит воздух, потому что лучи в первую очередь направлены на предметы интерьера и стены. В дальнейшем передача теплоты будет осуществляться от стен или предметов непосредственно пространству комнаты, причем процесс происходит за несколько минут.

Положительные стороны

Главным преимуществом таких приборов является быстрый и легких обогрев помещения. Например, чтобы нагреть холодную комнату до температуры +24ºС, потребуется 20 минут. В процессе не возникает движение воздуха, который способствует образованию пыли и больших загрязнений. Поэтому инфракрасный излучатель устанавливают в помещениях те люди, которые имеют аллергию.

Кроме того, инфракрасные лучи, попадая на поверхность с пылью, не вызывают ее горение, и, как следствие, нет запах горелой пыли. Качество обогрева и долговечность прибора зависит от нагревательного элемента. В таких устройствах используется керамический тип.

Стоимость

Цена таких устройств довольна низка и доступна всем слоям населения. Например, газовая горелка стоит от 800 рублей. Целую печку можно приобрести за 4000 рублей.

Сауна

Что собой представляет инфракрасная кабина? Это специальное помещение, которое строится из натуральных сортов дерева (например, кедра). В него устанавливаются инфракрасные излучатели, действующие на дерево.

Во время нагрева выделяются фитонциды — полезные компоненты, которые предотвращают развитие или появление грибков и бактерий.

Такая инфракрасная кабина в народе называется сауной. Внутри помещения температура воздуха достигает 45ºС, поэтому находиться в нем довольно комфортно. Такая температура позволяет прогреть человеческое тело равномерно и глубоко. Поэтому тепло не воздействует на сердечно-сосудистую систему. Во время процедуры удаляются накопленные токсины и шлаки, ускоряется обмен веществ в организме (за счет быстрого движения крови), также ткани обогащаются кислородом. Однако выделение пота — это не главное свойство инфракрасной сауны. Она направлена на улучшение самочувствия.

Влияние на человека

Такие помещения благотворно сказываются на организме человека. Во время процедуры прогреваются все мышцы, ткани и кости. Ускорение кровообращения влияет на обмен веществ, который помогает насытить мышцы и ткани кислородом. Кроме того, инфракрасную кабину посещают с целью профилактики различных заболеваний. Большинство людей оставляет только положительные отзывы.

Негативное воздействие инфракрасного излучения

Источники инфракрасного излучения могут вызывать не только положительное воздействие на организм, но и наносить ему вред.

При длительном воздействии лучей происходит расширение капилляров, что приводит к появлению покраснения или ожогов. Особый вред источники инфракрасного излучения наносят органам зрения — это образование катаракты. В некоторых случаях у человека появляются судороги.

На организм человека влияют короткие лучи, вызывая При повышении температуры головного мозга на несколько градусов наблюдается ухудшение состояния: потемнение в глазах, головокружение, тошнота. Дальнейший рост температуры может привести к образованию менингита.

Ухудшение или улучшение состояния происходит за счет интенсивности электромагнитного поля. Она характеризуется температурой и расстоянием до источника излучения тепловой энергии.

Длинные волны инфракрасного излучения играют особую роль в разных процессах жизнедеятельности. Короткие же больше влияют на человеческий организм.

Как предотвратить вредное влияние ИК-лучей?

Как говорилось ранее, отрицательное воздействие на человеческий организм оказывает короткое тепловое излучение. Рассмотрим примеры, в которых ИК-излучение опасно.

На сегодняшний день вредить здоровью могут инфракрасные нагреватели, излучающие температуру выше 100ºС. Среди них выделяют следующие:

  • Промышленное оборудование, излучающее лучистую энергию. Чтобы предотвратить негативное воздействие, следует использовать спецодежду и теплозащитные элементы, а также проводить профилактические мероприятия среди работающего персонала.
  • Инфракрасный прибор. Самым известным обогревателем является печь. Однако она уже давно вышла из обихода. Все чаще в квартирах, загородных домах и дачах стали использовать электрические инфракрасные нагреватели. В его конструкции предусмотрен нагревательный элемент (в виде спирали), который защищен специальным теплоизолирующим материалом. Такое воздействие лучей не вредит человеческому организму. Воздух в обогреваемой зоне не сушится. Нагреть помещение можно за 30 минут. Сначала инфракрасное излучение нагревает предметы, а уже они и всю квартиру.

Инфракрасное излучение широко применяется в различных сферах, начиная с промышленной и заканчивая медициной.

Однако обращаться с ними следует аккуратно, так как лучи могут оказать негативное воздействие на человека. Все зависит от длины волны и расстояния до нагревательного прибора.

Итак, мы выяснили, какие существуют источники инфракрасного излучения.

Умеем делать? Не-а.

Мы все привыкли к тому, что цветы красные, черные поверхности не отражают свет, кока-кола непрозрачная, горячим паяльником нельзя ничего осветить как лампочкой, а фрукты можно легко отличить по их цвету. Но давайте представим на минутку, что мы может видеть не только видимый диапазон(хи-хи), но и ближний инфракрасный. Ближний инфракрасный свет - это вовсе не то, что можно увидеть в тепловизоре . Он скорее ближе в видимому свету, чем к тепловому излучению. Но у него есть ряд интересных особенностей - часто совершенно непрозрачные в видимом диапазоне предметы отлично просвечиваются в инфракрасном свете - пример на первой фотографии.
Черная поверхность плитки прозрачна для ИК, и с помощью камеры, у которой снят с матрицы фильтр можно рассмотреть часть платы и нагревательный элемент.

Для начала - небольшое отступление. То, что мы называем видимым светом - всего лишь узкая полоска электромагнитного излучения .
Вот, например я упер с википедии такую картинку:

Мы просто не видим ничего кроме этой маленькой части спектра. И фотоаппараты, которые делают люди - изначально кастрированы, чтобы добиться похожести фотоснимка и человеческого зрения. Матрица фотоаппарата способна видеть инфракрасный спектр, но специальным фильтром(он называется Hot-mirror) эта возможность убирается - иначе снимки будут выглядеть несколько непривычно для человеческого глаза. А вот если этот фильтр убрать…

Камера

Подопытным выступил китайский телефон, который изначально предназначался для обзора. К сожалению, выяснилось что радиочасть у него жестоко глючит - то принимает, то не принимает звонки. Само-собой, писать я про него не стал, но китайцы не захотели ни выслать замену, ни забрать этот. Так он остался у меня.
Разбираем телефон:

Вытаскиваем камеру. Паяльником и скальпелем аккуратно отделяем фокусировочный механизм(сверху) от матрицы.

На матрице должно быть тонкое стеклышко, возможно с зеленоватым или красноватым отливом. Если там его не - посмотрите на часть с «объективом». Если нет и там, то скорее всего все плохо - оно напылено на матрицу или на одну из линз, и снять ее будет более проблематично, чем найти нормальную камеру.
Если оно есть - нам надо его как можно более аккуратно снять, не повредив матрицу. У меня оно треснуло при этом, и пришлось долго выдувать осколки стекла с матрицы.

К сожалению, я потерял свои фотки, поэтому покажу фотку irenica из ее блога , которая делала тоже самое, но с веб-камерой.

Вот тот осколок стекла в углу - как раз и есть фильтр. Был фильтр.

Собираем все обратно, учитывая то, что при изменении зазора между объективом и матрицей камера не сможет правильно сфокусироваться - у вас получится или близорукая, или дальнозоркая камера. Мне потребовалось три раза собрать-разобрать камеру, чтобы добиться корректно работы механизма автофокуса.

Вот теперь можно окончательно собрать телефон, и начать исследовать этот новый мир!

Краски и вещества

Кока-кола внезапно стала полупрозрачной. Сквозь бутылку проникает свет с улицы, а через стакан видны даже предметы в комнате.

Плащ из черного стал розовым! Ну, кроме пуговиц.

Черная часть отвертки тоже посветлела. А вот у телефона эта участь постигла только кольцо джойстика, остальная часть покрыта другой краской, которая ИК не отражает. Так же как и пластик док-станции для телефона на заднем плане.

Таблетки из зеленых превратились в сиреневые.

Оба кресла в офисе тоже превратились из готично-черных в непонятные цветные.

Искусственная кожа осталась черной, а ткань - оказалось розовой.

Рюкзаку(он есть на заднем плане предыдущей фотки) стало еще хуже - он практически весь стал сиреневым.

Как и сумка для фотоаппарата. И обложка электронной книги

Коляска из синий превратилась в ожидаемо-фиолетовую. А световозвращающая нашивка, хорошо видимая в обычную камеру совсем не видна в ИК.

Красная краска, как близкая к нужной нам части спектра, отражая красный свет, захватывает и часть ИК. В итоге красный цвет заметно светлеет.

Причем таким свойством обладает все красная краска, что я замечал.

Огонь и температура

Еле тлеющая сигарета выглядит в ИК как очень яркая точка. Стоят ночью люди на остановке с сигаретами - а их кончики освещают им лица.

Зажигалка, свет которой на обычной фотографии вполне сравним с фоновым освещением в ИК режиме перекрыла жалкие потуги фонарей на улице. На фотографии даже не видно фона - умный фотоаппарат отработал изменение яркости, уменьшив экспозицию.

Паяльник при разогреве светится как небольшая лампочка. А в режиме поддержания температуры имеет нежно-розовый свет. А еще говорят что пайка не для девушек!

Горелка выглядит практически одинаково - ну разве что факел чуть дальше(на конце температура падает довольно быстро, и на определенном этапе уже перестает светить в видимом свете, но еще светит в ИК).

А вот если нагреть горелкой стеклянную палочку - стекло начнет светиться в ИК довольно ярко, и палочка будет выступать волноводом(яркий кончик)

Причем палочка будет светиться довольно долго и после прекращения нагрева

А фен термовоздушной станции вообще выглядит как фонарик с сеточкой.

Лампы и свет

Буква М на входе в метро горит гораздо ярче - в ней все еще используются лампы накаливания. А вот вывеска с название станции почти не изменила яркость - значит там люминесцентные лампы.

Двор ночью выглядит немного странно - сиреневая трава и гораздо светлее. Там, где камера в видимом диапазоне уже не справляется и вынуждена повышать исо(зернистость в верхней части), камере без ИК фильтра хватает света с запасом.

На этой фотографии получилась забавная ситуация - одно и то же дерево освещают два фонаря с разными лампами - слева лампой НЛ (оранжевая уличная), а справа - светодиодной. У первой в спектре излучения есть ик, и поэтому на фотографии листва под ней выглядит светлофиолетовой.

А у светодиодной нет ИК, а только видимый свет(поэтому лампы на светодиодах более энергоэффективны - энергия не тратится на излучение ненужного излучения, которое человек все равно не увидит). Поэтому листве приходится отражать то, что есть.

А если посмотреть на дом вечером, то можно заметить, что разные окна имеют разный оттенок - одни ярко-фиолетовые, а другие желтые или белые. В тех квартирах, чьи окна светятся фиолетовым(голубая стрелка) до сих пор используют лампы накаливания - горячая спираль светит всем подряд равномерно по всему спектру, захватывая и УФ и ИК диапазон. В подъездах используются энергосберегающие лампы холодного белого света(зеленая стрелка), а в части квартир - люминесцентные теплого света(желтая стрелка).

Восход. Просто восход.

Закат. Просто закат. Интенсивности солнечного света недостаточно для тени, а вот в инфракрасном диапазоне(может из-за разного преломления света с разной длинной волны, или из-за проницаемости атмосферы) тени видны отлично.

Занимательно. У нас в коридоре одна лампа сдохла и свет еле-еле, а вторая - нет. В инфракрасном свете наоборот - дохлая лампа светит гораздо ярче, чем живая.

Домофон. Точнее, штука рядом с ним, которая с камерами и подсветкой, которая включается в темноте. Она такая яркая, что видна и на обычную камеру, но для инфракрасной - это почти прожектор.

Подсветку можно включить и днем, закрыв пальцем датчик освещения.

Подсветка видеонаблюдения. У самой камеры подсветки не было, поэтому ее сколхозили из говна и палок. Она не очень яркая, потому что снята днем.

Живая природа

Волосатый киви и зеленый лайм по цвету почти не отличаются друг от друга.

Зеленые яблоки стали желтыми, а красные - ярко-сиреневыми!

Белые перцы стали желтыми. А привычные зеленый огурцы - каким-то инопланетным фруктом.

Яркие цветки стали практически однотонными:

Цветок почти не отличается по цвету от окружающей травы.

Да и яркие ягоды на кусте стало очень трудно увидеть в листве.

Да что ягоды - даже разноцветная листва стала однотонной.

Короче, выбрать фрукты по их цвету уже не получится. Придется спрашивать продавца, у него-то нормальное зрение.

Но почему на фотографиях все розовое?

Для ответа на этот вопрос нам придется вспомнить строение матрицы фотоаппарата. Я опять спер картинку из википедии.

Это фильтр байера - массив фильтров окрашенных в три разных цвета, расположенных над матрицей. Матрица воспринимает весь спектр одинаково, и только фильтры помогают построить полноцветную картинку.
Но инфракрасный спектр фильтры пропускают неодинаково - синие и красные больше, а зеленые меньше. Камера думает, что вместо инфракрасного излучения на матрицу попадает обычный свет и пытается формировать цветную картинку. На фотографиях, где яркость ИК-излучения минимальна обычные цвета еще пробиваются - на фотографиях можно заметить оттенки цветов. А там, где яркость большая, например на улице под ярким солнцем - ИК попадает на матрицу именно в той пропорции, которую пропускают фильтры, и которое образует розовый или фиолетовый цвет, забивая своей яркостью всю остальную цветовую информацию.
Если фотографировать с надетым на объектив фильтром - пропорция цветов получается другой. Например вот такой:

Эту картинку я нашел в сообществе ru-infrared.livejournal.com
Там же еще куча картинок снятых в инфракрасном диапазоне. Зелень на них белая потому, что ББ выставляется как раз по листве.

Но почему растения получаются такими яркими?

На самом деле, этот вопрос состоит из двух - почему зелень выглядит ярко и почему фрукты яркие.
Зелень яркая потому что в инфракрасной части спектра поглощение минимально(а отражение - максимально, что и показывает график):

Виновен в этом хлорофил. Вот его спектр поглощения:

Скорее всего это связано с тем, что растение защищается от высокоэнергетического излучения, подстраивая спектры поглощения таким образом, чтобы получить и энергию для существования и не быть засушенным от слишком щедрого солнца.

А это спектр излучения солнца(точнее, той части солнечного спектра, который достигает земной поверхности):

А почему ярко выглядит фрукты?

У плодов в кожуре зачастую нет хлорофилла, но тем не менее - они отражают ИК. Ответственно за это вещество, которое называется эпикутикулярный воск - тот самый белый налет на огурцах и сливах. Кстати, еспи погуглить «белый налет на сливах», то результатами будет что угодно, но только не это.
Смысл в этом примерно такой же - надо и окраску сохранить, которая может быть критична для выживания, и не дать солнцу высушить плод еще на дереве. Сушеный чернослив на деревьях это, конечно, отлично, но немного не вписывается в жизненные планы растения.

Но блин, почему рака-богомола?

Сколько я не искал, какие животные видят инфракрасный диапазон, мне попадались только раки-богомолы(ротоногие). Вот такие лапочки:

Кстати, если вы не хотите пропустить эпопею с чайником или хотите увидеть все новые посты нашей компании, вы можете подписаться на на странице компании (кнопка «подписаться»)

Теги: Добавить метки

Инфракрасные (ИК) лучи – это электромагнитные волны. Человеческий глаз не способен воспринимать это излучение, но человек воспринимает его как тепловую энергию и ощущает всей кожей. Нас постоянно окружают источники ИК излучения, которые отличаются интенсивностью и длиной волн.

Стоит ли опасаться инфракрасных лучей, вред или пользу приносят они человеку и в чем заключается их воздействие?

Что же такое ИК-излучение, его источники

Как известно, спектр солнечного излучения, воспринимаемый глазом человека как видимый цвет, находится между фиолетовыми волнами (самые короткие – 0, 38 мкм) и красными (самыми длинными – 0,76 мкм). Помимо этих волн, существуют электромагнитные волны, не доступные для человеческого глаза – ультрафиолетовые и инфракрасные. «Ультра» обозначает, что они находятся ниже или, другими словами, меньше фиолетового излучения. «Инфра», соответственно, – выше или больше красного излучения.

То есть, ИК-излучение – это электромагнитные волны, лежащие за диапазоном красного цвета, длина которых больше, чем у видимого красного излучения. Исследуя электромагнитные излучения, немецкий астроном Уильям Гершель обнаружил невидимые волны, которые вызывали повышение температуры термометра, и назвал их инфракрасным тепловым излучением.

Естественным мощнейшим источником теплового излучения является Солнце. Из всех излучаемых светилом лучей 58% приходится именно на долю инфракрасных. Искусственными источниками служат все электронагревательные приборы, преображающие электроэнергию в тепло, а так же любые предметы, температура которых выше абсолютной нулевой отметки – 273оС.

Свойства инфракрасного излучения

ИК-излучение имеет ту же природу и свойства, что и обычный свет, только большую длину волны. Видимые глазу световые волны, достигая предметов, отражаются, преломляясь определенным образом, и человек видит отражение предмета в широкой цветовой гамме. А инфракрасные лучи, достигая предмета, поглощаются им, выделяя энергию и нагревая этот предмет. ИК-излучение мы не видим, но осязаем его как тепло.

Другими словами, если бы Солнце не выделяло широкий спектр длинноволновых инфракрасных лучей, человек только бы видел солнечный свет, но не ощущал его тепло.

Трудно представить жизнь на Земле без солнечного тепла.

Некоторая часть его поглощается атмосферой, а доходящие до нас волны делятся на:

Короткие – длина лежит в диапазоне 0,74 мкм – 2,5 мкм, а источают их предметы, нагретые до температуры более 800оС;

Средние – от 2,5 мкм до 50 мкм, t нагревания от 300 до 600ос;

Длинные – самый широкий диапазон от 50 мкм до 2000 мкм (2 мм), t до 300оС.

Свойства инфракрасного излучение, его польза и вред для человеческого организма, обусловлены источником излучения – чем выше температура излучателя, тем интенсивнее волны и глубже их проникающая способность, степень воздействие на любые живые организмы. Исследования, проведенные на клеточном материале растений и животных, обнаружили целый ряд полезных свойств ИК лучей, что нашло широкое применение их в медицине.

Польза ИК-излучения для человека, применение в медицине

Медицинские исследования доказали, что для человека не только безопасны, но и очень полезны ИК лучи, находящиеся в длинном диапазоне. Они активизируют кровоток и улучшают процессы обмена, подавляют развитие бактерий и способствуют быстрому заживлению ран после операционных вмешательств. Способствуют вырабатыванию иммунитета против ядовитых химических веществ и гамма-излучения, стимулируют выведение токсинов, шлаков через пот и мочу и понижению холестерина.

Особенно эффективными являются лучи длиной 9,6 мкм, которые способствуют регенерации (восстановлению) и оздоровлению органов и систем человеческого организма.

В народной медицине испокон веков применялось лечение нагретой глиной, песком или солью – это яркие примеры благотворного воздействия тепловых ИК лучей на человека.

Современная медицина для лечения ряда заболеваний научилась использовать полезные свойства:

При помощи инфракрасного излучения можно лечить переломы костей, патологические изменения в суставах, ослаблять мышечные боли;

ИК лучи оказывают положительный эффект при лечении парализованных больных;

Быстро заживляют раны (послеоперационные и другие), снимают болевые ощущения;

За счет стимуляции кровообращения помогают нормализовать артериальное давление;

Улучшают кровообращение в мозгу и память;

Выводят из организма соли тяжелых металлов;

Имеют выраженный противомикробный, противовоспалительный и противогрибковый эффект;

Укрепляют иммунную систему.

Бронхиальная астма, пневмония, остеохондроз, артрит, мочекаменная болезнь, пролежни, язвы, радикулит, обморожение, заболевания органов пищеварения – далеко не полный список патологий, для лечения которых используется положительное влияние ИК-излучения.

Отопление жилых помещений при помощи приборов ИК-излучения способствует ионизированию воздуха, борется с проявлениями аллергии, уничтожает бактерии, плесневые грибки, улучшает состояние кожных покровов благодаря активизации циркуляции крови. Приобретая обогреватель, обязательно необходимо выбирать длинноволновые приборы.

Другие сферы применения

Свойство предметов излучать тепловые волны нашло применение в различных областях человеческой деятельности. Например, при помощи специальных термографических камер, способных улавливать тепловое излучение, в абсолютной темноте можно увидеть и распознать любые предметы. Термографические камеры широко используются в военном деле и промышленности для обнаружения невидимых предметов.

В метеорологии и астрологии ИК лучи используются для определения расстояний до предметов, облаков, температуры поверхности воды и т.д., инфракрасные телескопы позволяют изучать космические объекты, недоступные для видения через обычные приборы.

Наука не стоит на месте и число ИК приборов и сфер их применения постоянно растет.

Вред

Человек, как и любое тело, излучает средние и длинные инфракрасные волны, которые лежат в диапазоне длиной от 2,5 мкм до 20-25 мкм, поэтому именно волны такой длины полностью безопасны для человека. Короткие волны способны глубоко проникать в ткани человека, провоцируя нагревание внутренних органов.

Коротковолновое инфракрасное излучение не только вредно, но и очень опасно для человека, особенно для зрительных органов.

Солнечный тепловой удар, провоцируемый короткими волнами, происходит при нагревании головного мозга всего на 1С. Его симптомами являются:

Сильное головокружение;

Тошнота;

Учащение пульса;

Потеря сознания.

Металлурги и сталевары, постоянно подвергающиеся тепловому воздействию коротких ИК лучей, чаще других подвергаются заболеваниям сердечно — сосудистой системы, имеют ослабленный иммунитет, чаще подвергаются простудным заболеваниям.

Чтобы избежать вредного воздействия инфракрасного излучения, необходимо принимать защитные меры и ограничивать время пребывания под опасными лучами. А вот польза теплового солнечного излучения для жизни на нашей планете – неоспорима!

Гамма-излучение Ионизирующее Реликтовое Магнито-дрейфовое Двухфотонное Спонтанное Вынужденное

Инфракра́сное излуче́ние - электромагнитное излучение , занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами .

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

  • коротковолновая область: λ = 0,74-2,5 мкм;
  • средневолновая область: λ = 2,5-50 мкм;
  • длинноволновая область: λ = 50-2000 мкм;

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн - терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым » излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы . Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .

Применение

Медицина

Инфракрасные лучи применяются в физиотерапии .

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления , системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата .

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Антикоррозийное средство

Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал , белок , липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесенные на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надежной защитой от подделок.

Опасность для здоровья

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

См. также

Другие способы теплопередачи

Способы регистрации (записи) ИК-спектров.

Примечания

Ссылки

ВВЕДЕНИЕ

Несовершенство собственной природы, компенсируемое гибкостью интеллекта, непрерывно толкало человека к поиску. Желание летать как птица, плавать как рыба, или, скажем, видеть ночью подобно кошке, воплощались в действительность по мере достижения требуемых знаний и технологий. Научные изыскания часто подстегивались нуждами военной деятельности, а результаты определялись существующим технологическим уровнем.

Расширение диапазона зрения для визуализации недоступной для глаз информации является одной из наиболее трудных задач, так как требует серьезной научной подготовки и значительной технико-экономической базы. Первые успешные результаты в этом направлении были получены в 30-х годах XX века. Особенную актуальность проблема наблюдения в условиях низкой освещенности приобрела в ходе Второй мировой войны.

Естественно, усилия, затраченные в этом направлении, привели к прогрессу в научных исследованиях, медицине, техники связи и других областях.

ФИЗИКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны (=м) и коротковолновым радиоизлучением(=м).Открыто инфракрасное излучение было в 1800 г. английским ученым У. Гершелем. Спустя 123 года после открытия инфракрасного излучения советский физик А.А. Глаголева-Аркадьева получила радиоволны с длиной волны равной приблизительно 80 мкм, т.е. располагающиеся в инфракрасном диапазоне длин волн. Это доказало, что свет, инфракрасные лучи и радиоволны имеют одинаковую природу, все это лишь разновидности обычных электромагнитных волн.

Инфракрасное излучение также называют «тепловым» излучением, так как что все тела, твердые и жидкие, нагретые до определенной температуры излучают энергию в инфракрасном спектре.

ИСТОЧНИКИ ИК ИЗЛУЧЕНИЯ

ОСНОВНЫЕ ИСТОЧНИКИ ИК ИЗЛУЧЕНИЯ НЕКОТОРЫХ ОБЪЕКТОВ

Инфракрасное излучение баллистических ракет и космических объектов

Инфракрасное излучение самолетов

Инфракрасное излучение надводных кораблей

Факел маршевого

двигателя, предста- вляющий собой поток горящих газов, несущих взвешенные твердые частицы золы и сажи, которые образуются при сгорании ракетного топлива.

Корпус ракеты.

Земля, которая отражает часть солнечных лучей, попавших на нее.

Сама Земля.

Отраженное от планера самолета излучение Солнца, Земли, Луны и других источников.

Собственное тепловое излучение удлинительной трубы и сопла турбореак-тивного двигателя или выхлопных патрубков поршневых двигателей.

Собственное тепловое излу-чение струи выхлопных газов.

Собственное тепловое излучение обшивки самолета, возникающее за счет аэродина-мического нагрева при полете с большими скоростями.

Кожух дымовой трубы.

Выхлопное

отверстие дымовой трубы

ОСНОВНЫЕ СВОЙСТВА ИК ИЗЛУЧЕНИЯ

1. Проходит через некоторые непрозрачные тела, также сквозь дождь,

дымку, снег.

2. Производит химическое действие на фотопластинки.

3. Поглощаясь веществом, нагревает его.

4. Вызывает внутренний фотоэффект у германия.

5. Невидимо.

6. Способно к явлениям интерференции и дифракции.

7. Регистрируют тепловыми методами, фотоэлектрическими и

фотографическими.

ХАРАКТЕРИСТИКИ ИК ИЗЛУЧЕНИЯ

Собственное Отраженное Ослабление Физические

тепловое объектами ИК ИК излучения особенности ИК

излучение излучение в атмосфере излучения фонов

Характе-ристики

Осн. понятия

Собствен-ное тепловое излуче-ние нагретых тел

Фундаментальное понятие - абсолютно черное тело. Абсолютно черным телом называется тело, поглощающее все падающие на него излучения на любых длинах волн. Распределение интенсивности излучения черного тела (з/н Планка): ,где -спектральная яркость излучения при температуре Т,-длина волны в мкм, С1 и С2 - постоянные коэффициенты: С1=1,19*Вт*мкм*см*ср,

С2=1,44*мкм*град. Максимумдлины волны(закон Вина): , где Т-абсолютная температура тела.

Интегральная плотность излучения- закон Стефана - Больцмана:

Отраженное объек-тами ИК излуче-ние

Максимум солнечного излучения, определяющий отраженную составляющую, соответствует длинам волн короче 0,75 мкм, а 98% всей энергии излучения Солнца приходится на участок спектра до 3 мкм. Часто эту длину волны считают граничной, разделяющей отраженную (солнечную) и собственную составляющие ИК излучения объектов. Следовательно, можно принять, что в ближней части ИК спектра (до 3 мкм) определяющей является отраженная составляющая и распределение лучистости по объектам зависит от распределения коэффициента отражения и облученности. Для дальней части ИК спектра определяющим является собственное излучение объектов, а распределение лучистости по их площади зависит от распределения коэффициентов излучения и температуры.

В средневолновой части ИК спектра необходимо учитывать все четыре параметра.

Ослабле-ние ИК излуче-ния в атмосфе-ре

В ИК-диапазоне длин волн имеется несколько окон прозрачности и зависимость пропускания атмосферы от длины волны имеет весьма сложный вид. Ослабление ИК излучения определяется полосами поглощения водяных паров и газовых составляющих, главным образом углекислого газа и озона, а также явлениями рассеивания излучения. Смотреть рисунок «Поглощение ИК излучения».

Физи-ческие особен-ности ИК излуче-ния фонов

ИК излучение имеет две составляющие: собственное тепловое излучение и отраженное (рассеянное) излучение Солнца и других внешних источников. В диапазоне длин волн короче 3 мкм доминирует отраженное и рассеянное солнечное излучение. В этом диапазоне длин волн, как правило, можно пренебречь собственным тепловым излучением фонов. Наоборот, в диапазоне длин волн более 4 мкм преобладает собственное тепловое излучение фонов и можно пренебречь отраженным (рассеянным) солнечным излучением. Диапазон длин волн 3-4 мкм является как бы переходным. В этом диапазоне наблюдается ярко выраженный минимум яркости фоновых образований.

ПОГЛОЩЕНИЕ ИК ИЗЛУЧЕНИЯ

Спектр пропускания атмосферы в ближней и средней инфракрасной области (1,2-40 мкм) на уровне моря (нижняя кривая на графиках) и на высоте 4000 м (верхняя кривая); в субмиллиметровом диапазоне (300-500 мкм) излучение до поверхности Земли не доходит.

ВОЗДЕЙСТВИЕ НА ЧЕЛОВЕКА

С древних времен люди хорошо знали благотворную силу тепла или, говоря научным языком, инфракрасного излучения.

В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм(так называемая длинноволновая часть инфракрасного диапазона), оказывающая на организм человека по - настоящему уникальное полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела с максимумом на длине волны около 10 мкм. Поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё». Самый известный естественный источник инфракрасных лучей на нашей Земле - это Солнце, а самый известный на Руси искусственный источник длинноволновых инфракрасных лучей - это русская печь, и каждый человек обязательно испытывал на себе их благотворное влияние. Приготовление пищи с помощью инфракрасных волн делает пищу особенно вкусной, сохраняет витамины и минералы, при этом не имеет ничего общего с микроволновыми печами.

Воздействуя на организм человека в длинноволновой части инфракрасного диапазона, можно получить явление, называемое «резонансным поглощением», при котором внешняя энергия будет активно поглощаться организмом. В результате этого воздействия повышается потенциальная энергия клетки организма, и из нее уходит не связанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови.

ОСОБЕННОСТИ ИЗОБРАЖЕНИЙ ОБЪЕКТОВ В ИК ДИАПАЗОНЕ

Инфракрасные изображения имеют непривычное для наблюдателя распределение контрастов между известными предметами вследствии иного распределения оптических характеристик поверхностей объектов в ИК диапазоне по сравнению с видимой частью спектра. ИК излучения позволяют обнаружить на ИК снимках предметы, не заметные на обычных фотоснимках. Можно выявлять участки поврежденных деревьев и кустарников, а также вскрывать факты использования свежесрезанной растительности для маскировки объектов. Различная передача тонов на изображениях, привела к созданию так называемой многозональной съемки, при которой один и тот же участок плоскости предметов одновременно фотографируется в разных зонах спектра многозональной камерой.

Другая особенность ИК изображений, свойственная тепловым картам, состоит в том, что в их формировании кроме отраженного излучения участвует и собственное, а в ряде случаев лишь оно одно. Собственное излучение определяется излучательной способностью поверхностей предметов и их температурой. Это дает возможность выявлять на тепловых картах нагретые поверхности или их участки, совершенно не обнаруживающиеся на фотоснимках, и использовать тепловые изображения как источник информации о температурном состо-янии предмета.

ИК изображения позволяют получать информацию и об объектах, которые уже отсутствуют в момент съемки. Так, например, на поверхности площадки в месте стоянки самолета сохраняется в течение некоторого времени его тепловой портрет, который может быть зарегистрирован на ИК снимке.

Четвертой особенностью тепловых карт является возможность регистрации объектов как при отсутствии падающего излучения, так и при отсутствии температурных перепадов; только за счет различий в излучательной способности их поверхностей. Это свойство позволяет наблюдать объекты в полной темноте и в таких условиях, когда темпе-ратурные различия выравнены до невоспринимаемых. В таких условиях особенно четко выявляются неокрашенные металлические поверхности, имеющие низкую излучательную способность, на фоне неметаллических предметов, выглядящих более светлыми ("темными"), хотя их температуры одинаковы.

Еще одна особенность тепловых карт связана с динамичностью тепловых процессов, протекающих в течение суток В связи с естественным суточным ходом температур все предметы на земной поверхности участвуют в постоянно протекающем теплообменном процессе. При этом температура каждого тела зависит от условий теплообмена, физических свойств окружающей среды, собственных свойств данного объекта (теплоемкость, теплопроводность) и др. В зависимости от этих факторов соотношение температур смежных предметов изменяется в течение суток, поэтому тепловые карты, полученные в разное время даже от одних и тех же объектов, отличаются друг от друга.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

В двадцать первом веке началось внедрение инфракрасных излучений в нашу жизнь. Теперь оно находит применение в промышленности и в медицине, в быту и сельском хозяйстве. Оно универсально и может применяться для самых разнообразных целей. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов. Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане.

Приборы ночного видения - история поколений

Нулевое поколение

«Стакан Холста»

Трех- и двухэлектродная системы

    Фотокатод

    Манжета

  1. Фокусирующий электрод

середина 30-х годов

вательском центре фирмы "Филипс", Голландия

За рубежом - Зворыкин, Фарнсворд, Мортон и фон Арденна; в СССР - Г.А. Гринберг, А.А. Арцимович

Этот ЭОП представлял собой два вложенных друг в друга стакана, на плоские донышки которых и наносились фотокатод и люминофор. Приложенное к этим слоям высоковольтное напряжение, создавало

электростатическое поле, обеспечивающее прямой перенос электронного изображения с фотокатода на экран с люминофором. В качестве фоточувствительного слоя в "стакане Холста" использовался серебряно-кислородно-цезиевый фотокатод, имевший довольно низкую чувствительность, хотя и работоспособный в диапазоне до 1,1 мкм. К тому же, этот фотокатод обладал высоким уровнем шумов, для устранения которых требовалось охлаждение до минус 40 °С.

Достижения электронной оптики позволили заменить прямой перенос изображения фокусировкой электростатическим полем. Наибольшим недостатком ЭОП с электростатическим переносом изображения является резкий спад разрешающей способности от центра поля зрения к краям из-за несовпадения криволинейного электронного изображения с плоским фотокатодом и экраном. Для решения этой проблемы их стали делать сферическими, что существенно усложнило конструкцию объективов, рассчитываемых обычно на плоские поверхности.

Первое поколение

Многокаскадные ЭОП

СССР, М.М. Бутслов

фирмами RCA, ITT (США), Philips (Нидерланды)

На базе волоконно-оптических пластин (ВОП), представляющих собой пакет из множества светодиодов, были разработаны плосковогнутые линзы, которые и стали устанавливать взамен входного и выходного окон. Оптическое изображение, спроецированное на плоскую поверхность ВОП, без искажений передается на вогнутую сторону, что и обеспечивает сопряжение плоских поверхностей фотокатода и экрана с криволинейным электронным полем. В результате применения ВОП разрешающая способность стала по всему полю зрения такой же, как и в центре.

Второе поколение

Вторично-эмиссионный усилитель

Псевдобинокуляр

1- фотокатод

3- микроканальная пластина

4– экран

В 70-е годы

фирмами США

фирма "Praxitronic" (ФРГ)

Этот элемент представляет собой сито с регулярно расположенными каналами диаметром около 10 мкм и толщиной не более 1 мм. Число каналов равно числу элементов изображения и имеет порядок 10 6 . Обе поверхности микроканальной пластины (МКП) полируются и металлизируются, между ними прикладывается напряжение в несколько сотен вольт.

Попадая в канал, электрон испытывает соударения со стенкой и выбивает вторичные электроны. В тянущем электрическом поле этот процесс многократно повторяется, позволяя получить коэффициент усиления NxlO 4 раз. Для получения каналов МКП используется разнородное по химическому составу оптическое волокно.

Были разработаны ЭОП с МКП бипланарной конструкции, то есть без электростатической линзы, своего рода технологический возврат к прямому, как и в "стакане Холста", переносу изображения. Полученные миниатюрные ЭОП позволили разработать очки ночного видения (ОНВ) псевдобинокулярной системы, где изображение с одного ЭОП разводится на два окуляра с помощью светоделительной призмы. Оборот изображения здесь осуществляется в дополнительных мини-объективах.

Третье поколение

ЭОП П + и SUPER II +

начато в 70-х годах до нашего времени

в основном американские компании

Длительная научная разработка и сложная технология изготовления, определяющие высокую стоимость ЭОП третьего поколения, компенсируется предельно высокой чувствительностью фотокатода. Интегральная чувствительность некоторых образцов достигает 2000 мА/Вт, квантовый выход (отношение числа эмитированных электронов к числу падающих на фотокатод квантов с длиной волны в области максимальной чувствительности) превышает 30%! Ресурс таких ЭОП составляет около 3 000 часов, стоимость от 600 до 900$, в зависимости от конструкции.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭОП

Поколения ЭОП

Тип фото-катода

Интегральная

чувствитель-ность,

Чувствитель-ность на

длинах волн 830-850

Коэффи-циент усиления,

Доступная

дальность

распознования

фигуры человека в

условиях естественной ночной освещенности, м

"Стакан Холста"

около 1, ИК подсветка

только при свете луны или ИК осветителе

Super II + или II ++

Инфракрасное излучение - электромагнитное излучение в диапазоне длин волн от м дом.В качестве источника инфракрасного (ИК) излучения может рассматриваться любое тело (газообразное, жидкое, твердое) с температурой выше абсолютного нуля (-273°С). Зрительный анализатор человека не воспринимает лучи в инфракрасном диапазоне. Поэтому видовые демаскирующие признаки в этом диапазоне добываются с помощью специальных приборов (ночного видения, тепловизоров), имеющих худшее разрешение, чем глаз человека. В общем случае к демаскирующим признакам объекта в ИК-диапазоне относятся следующие: 1)геометрические характеристики внешнего вида объекта (форма, размеры, детали поверхности); 2) температура поверхности. Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. Нет такой области, где бы не пригодился природный метод передачи тепла. Ведь всем известно, умнее природы человеку не стать, мы можем лишь подражать ей.

СПИСОК ЛИТЕРАТУРЫ

1. Курбатов Л.Н. Краткий очерк истории разработок приборов ночного видения на основе электронных оптических преобразователей и усилителей изображения// Вопр. Оборон. Техники. Сер. 11. - 1994

2. Кощавцев Н.Ф., Волков В.Г. Приборы ночного видения//Вопр. Оборон. Техники. Сер. П.- 1993 - Вып. 3 (138).

3. Леконт Ж., Инфракрасное излучение. М.: 2002. 410 с.

4. Меньшаков Ю.К., М51 Защита объектов и информации от технических средств разведки. М.: Российск. Гос. Гуманит. У-т, 2002. 399 с.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то