Какой орган управляет использованием организмом кислорода. Регуляция дыхания. Функциональная система кислородного снабжения организма. Высокогорье и иные гипоксические воздействия

Непрерывно идущие в каждой клетке организма окислительно-восстановительные реакции нуждаются в постоянном притоке субстратов окисления (углеводов, липидов и аминокислот) и окислителя - кислорода. В организме имеются внушительные запасы питательных веществ - углеводные и жировые депо, а также огромный запас белков в скелетных мышцах, поэтому даже сравнительно длительное (в течение нескольких суток) голодание не приносит человеку существенного вреда. А вот запасов кислорода в организме практически нет, если не считать небольшого количества, содержащегося в мышцах в форме оксимиоглобина, поэтому без его поставки человек способен выжить лишь 2-3 мин, после чего наступает так называемая «клиническая смерть». Если в течение 10-20 мин снабжение клеток мозга кислородом не восстановится, в них произойдут такие биохимические изменения, которые нарушат их функциональные свойства и приведут к скорой гибели всего организма. Другие клетки тела при этом могут и не пострадать в такой степени, но нервные клетки крайне чувствительны к недостатку кислорода. Вот почему одной из центральных физиологических систем организма является функциональная система кислородного обеспечения, и состояние именно этой системы чаще всего используется для оценки «здоровья».

Понятие о кислородном режиме организма. Кислород проходит в организме достаточно длинный путь (рис. 18). Попадая внутрь в виде молекул газа, он уже в легких принимает участие в целом ряде химических реакций, обеспечивающих его дальнейшую транспортировку к клеткам тела. Там, попадая в митохондрии, кислород окисляет разнообразные органические соединения, превращая их в конечном счете в воду и углекислоту. В таком виде кислород и выводится из организма.

Что заставляет кислород из атмосферы проникать в легкие, затем - в кровь, оттуда - в ткани и клетки, где уже он вступает в биохимические реакции? Очевидно, что существует некая сила, определяющая именно такое направление перемещения молекул этого газа. Эта сила - градиент концентраций. Содержание кислорода в атмосферном воздухе намного больше, чем в воздухе внутрилегочного пространства (альвеолярном). Содержание кислорода в альвеолах - легочных пузырьках, в которых происходит газообмен воздуха с кровью, - намного выше, чем в венозной крови. Ткани содержат кислорода гораздо меньше, чем артериальная кровь, а митохондрии содержат незначительное количество кислорода, поскольку поступающие в них молекулы этого газа немедленно вступают в цикл окислительных реакций и превращаются в химические соединения. Вот этот каскад постепенно понижающихся концентраций, отражающий градиенты усилия, в результате которых кислород из атмосферы проникает в клетки тела, и принято называть кислородным режимом организма (рис.19). Вернее, кислородный режим характеризуется количественными параметрами описанного каскада. Верхняя ступенька каскада характеризует содержание кислорода в атмосферном воздухе, который во время вдоха проникает в легкие. Вторая ступенька - содержание О2 в альвеолярном воздухе. Третья ступенька - содержание О 2 в артериальной крови, только что обогащенной кислородом. И наконец, четвертая ступенька - напряжение кислорода в венозной крови, которая отдала содержавшийся в ней кислород тканям. Эти четыре ступеньки образуют три «пролета», которые отражают реальные процессы газообмена в организме. «Пролет» между 1-й и 2-й ступеньками соответствует легочному газообмену, между 2-й и 3-й ступеньками - транспорту кислорода кровью, а между 3-й и 4-й ступеньками - тканевому газообмену. Чем больше высота ступеньки, тем больше перепад концентраций, тем выше градиент, при котором кислород транспортируется на этом этапе. С возрастом увеличивается высота первого «пролета», то есть градиент легочного газообмена; второго «пролета», т.е. градиент транспорта 02 кровью, тогда как высота третьего «пролета», отражающего градиент тканевого газообмена, снижается. Возрастное уменьшение интенсивности тканевого окисления является прямым следствием снижения с возрастом интенсивности энергетического обмена.


Рис. 19. Транспорт кислорода у человека (направление показано стрелками)

Рис. 20. Каскад напряжений кислорода во вдыхаемом воздухе (I), в альвеолах (А), артериях (а) и венах (К) У мальчика 5 лет, подростка 15 лет и взрослого 30 лет

Таким образом, усвоение кислорода организмом происходит в три стадии, которые разделены в пространстве и во времени. Первая стадия - нагнетание воздуха в легкие и обмен газов в легких - носит еще название внешнего дыхания. Вторая стадия - транспорт газов кровью - осуществляется системой кровообращения. Третья стадия - усвоение кислорода клетками организма - называется тканевым, или внутренним дыханием.

Из всех химических элементов, необходимых для жизни, только кислород усваивается организмом в чистом виде и в газообразном состоянии. Кислород, поступающий в организм в таком виде, служит для осуществления реакции окисления, при его участии происходит «сгорание» некоторых органических веществ в клетках, в результате чего образуется энергия, обеспечивающая все виды деятельности организма. Известно, что тело всякого сложного организма состоит из бесчисленного множества клеток; каждая из них представляет маленькую ячейку жизни и очаг его энергии. Окислительный процесс является единственным источником энергии для всех позвоночных животных и человека, поэтому понятно, что жизнь для этих существ невозможна без кислорода. К счастью, запасы кислорода в окружающей нас природе огромны и всем доступны! Мы живем на дне безбрежного воздушного океана, состоящего из азота (79,04%). кислорода (20,93%) и углекислого газа (0,03%). На каждый квадратный километр Земли приходится около 2 миллионов тонн кислорода!

Круговорот веществ, происходящий в природе, поддерживает неизменность этого состава атмосферы. Следствием такой доступности необходимого для жизни кислорода является то, что в организме животных и человека не образуется никаких его запасов. Поэтому потребность в кислороде оказывается острее, чем потребность в пище или в воде: если человек может прожить без пищи более месяца, без воды 10 дней, то без кислорода жизнь угасает через 4-7 мин! В результате окисления органических веществ образуется вода и углекислый газ (CO 2), который выводится из организма в атмосферу. Таким образом, наряду с обменом многочисленных веществ, поступающих в организм с пищей, для жизни необходим и - усвоение кислорода и выделение углекислого газа, который и составляет сущность процесса дыхания. В обыденном смысле слова под дыханием понимают вдох и выдох воздуха, которые регулярно чередуются, т. е. ту работу дыхательного аппарата, внешнее проявление которой известно каждому. Однако в действительности дело обстоит значительно сложнее. Дыхание многоклеточного организма складывается из дыхания каждой из бесчисленных клеточек нашего тела. Это значит, что каждая клетка должна непрерывно получать кислород и выделять в окружающую среду углекислый газ. Поэтому акт дыхания включает в себя несколько этапов:

1. Поступление кислорода из вдыхаемого воздуха в кровь - внешнее дыхание.

2. Доставка кислорода клеткам с кровью и тканевой жидкостью и отток углекислого газа от клеток через тканевую жидкость и кровь в выдыхаемый воздух - транспорт газов.

3. Усвоение кислорода клетками - тканевое дыхание.

Нарушение любого из этих этапов газообмена приводит к серьезному расстройству дыхания.

Рассмотрим подробнее, как осуществляются дыхательные функции и какие условия необходимы для нормального их отправления.

Рис. 16. Схема строения дыхательной системы:
1 - носовая полость; 2 - глотка; 3 - гортань; 4 - трахея; 5 - крупные бронхи; 6 - легкие; 7 - диафрагма.

Поступление воздуха в организм обеспечивается системой органов дыхания (рис. 16). От их работы во многом зависит эффективность газообмена. Дыхательный аппарат состоит из двух отделов: трубчатых органов, проводящих воздух, и легких, где собственно и совершается газообмен между кровью и воздухом. Оба отдела очень тесно связаны между собой.

Воздух поступает через носовую полость в глотку, затем в гортань, оттуда в трахею и в бронхи. Все эти органы составляют воздухоносные пути и служат для транспортировки воздуха в легкие. Однако было бы неверно думать, что функция их ограничивается только проведением воздуха. Особенно важную роль играет в акте дыхания носовая полость. Можно, конечно, вдыхать воздух и через рот, но, как мы увидим ниже, такойvcnoco6 дыхания значительно менее эффективен. Стенки носовой полости имеют неровный рельеф, за счет которого увеличивается поверхность слизистой оболочки, выстилающей ее; многочисленные кровеносные сосуды слизистой выполняют как бы роль водяного отопления, подогревая вдыхаемый воздух до температуры тела; кроме того, носовая полость сообщается с окружающими ее воздухоносными полостями (пазухами), расположенными в соседних костях; полагают, что смешивание вдыхаемого воздуха с воздухом, содержащимся в этих пазухах, также способствует его согреванию *. Соприкасаясь со слизистой, вдыхаемый воздух увлажняется и очищается от частиц пыли, которая оседает на тонкий слой слизи, покрывающей эту оболочку. Но особенно большое значение имеют многочисленные окончания чувствительных нервов, заложенные в носовой полости и, в частности, окончания обонятельных нервов, осуществляющих своеобразный контроль химического состава вдыхаемого воздуха. Профессор В. К. Трутнев указывает, что когда человек дышит через нос, то в организм поступает воздуха на 25% больше, чем когда он дышит через рот. Это объясняется тем, что в слизистой оболочке носовой полости разветвляется тройничный нерв, усиливающий дыхательную функцию легких. Врачи давно уже отмечали, что при затрудненном носовом дыхании значительно чаще наблюдаются заболевания легких. Нарушение правильного носового дыхания, связанное часто с заболеваниями носа и глотки, ведет к ослаблению не только у детей, но и у взрослых. Нарушение функции носового дыхания имеет, таким образом, не только местное значение, но оказывает отрицательное влияние на весь организм в целом.

* Эти пазухи, помимо того, вероятно, служат еще и резонаторами нашего голосового аппарата.

Непрерывно идущие в каждой клетке организма окислительно-восстановительные реакции нуждаются в постоянном притоке субстратов окисления (углеводов, липидов и аминокислот) и окислителя - кислорода. В организме имеются внушительные запасы питательных веществ - углеводные и жировые депо, а также огромный запас белков в скелетных мышцах, поэтому даже сравнительно длительное (в течение нескольких суток) голодание не приносит человеку существенного вреда. А вот запасов кислорода в организме практически нет, если не считать небольшого количества, содержащегося в мышцах в форме оксимиоглобина, поэтому без его поставки человек способен выжить лишь 2-3 мин, после чего наступает так называемая «клиническая смерть». Если в течение 10-20 мин снабжение клеток мозга кислородом не восстановится, в них произойдут такие биохимические изменения, которые нарушат их функциональные свойства и приведут к скорой гибели всего организма. Другие клетки тела при этом могут и не пострадать в такой степени, но нервные клетки крайне чувствительны к недостатку кислорода. Вот почему одной из центральных физиологических систем организма является функциональная система кислородного обеспечения, и состояние именно этой системы чаще всего используется для оценки «здоровья».

Понятие о кислородном режиме организма. Кислород проходит в организме достаточно длинный путь (рис. 18). Попадая внутрь в виде молекул газа, он уже в легких принимает участие в целом ряде химических реакций, обеспечивающих его дальнейшую транспортировку к клеткам тела. Там, попадая в митохондрии, кислород окисляет разнообразные органические соединения, превращая их в конечном счете в воду и углекислоту. В таком виде кислород и выводится из организма.

Что заставляет кислород из атмосферы проникать в легкие, затем - в кровь, оттуда - в ткани и клетки, где уже он вступает в биохимические реакции? Очевидно, что существует некая сила, определяющая именно такое направление перемещения молекул этого газа. Эта сила - градиент концентраций. Содержание кислорода в атмосферном воздухе намного больше, чем в воздухе внутрилегочного пространства (альвеолярном). Содержание кислорода в альвеолах - легочных пузырьках, в которых происходит газообмен воздуха с кровью, - намного выше, чем в венозной крови. Ткани содержат кислорода гораздо меньше, чем артериальная кровь, а митохондрии содержат незначительное количество кислорода, поскольку поступающие в них молекулы этого газа немедленно вступают в цикл окислительных реакций и превращаются в химические соединения. Вот этот каскад постепенно понижающихся концентраций, отражающий градиенты усилия, в результате которых кислород из атмосферы проникает в клетки тела, и принято называть кислородным режимом организма (рис.19). Вернее, кислородный режим характеризуется количественными параметрами описанного каскада. Верхняя ступенька каскада характеризует содержание кислорода в атмосферном воздухе, который во время вдоха проникает в легкие. Вторая ступенька - содержание О2 в альвеолярном воздухе. Третья ступенька - содержание О 2 в артериальной крови, только что обогащенной кислородом. И наконец, четвертая ступенька - напряжение кислорода в венозной крови, которая отдала содержавшийся в ней кислород тканям. Эти четыре ступеньки образуют три «пролета», которые отражают реальные процессы газообмена в организме. «Пролет» между 1-й и 2-й ступеньками соответствует легочному газообмену, между 2-й и 3-й ступеньками - транспорту кислорода кровью, а между 3-й и 4-й ступеньками - тканевому газообмену. Чем больше высота ступеньки, тем больше перепад концентраций, тем выше градиент, при котором кислород транспортируется на этом этапе. С возрастом увеличивается высота первого «пролета», то есть градиент легочного газообмена; второго «пролета», т.е. градиент транспорта 02 кровью, тогда как высота третьего «пролета», отражающего градиент тканевого газообмена, снижается. Возрастное уменьшение интенсивности тканевого окисления является прямым следствием снижения с возрастом интенсивности энергетического обмена.



Рис. 18. Транспорт кислорода у человека (направление показано стрелками)

Рис. 19. Каскад напряжений кислорода во вдыхаемом воздухе (I), в альвеолах (А), артериях (а) и венах (К) У мальчика 5 лет, подростка 15 лет и взрослого 30 лет



Таким образом, усвоение кислорода организмом происходит в три стадии, которые разделены в пространстве и во времени. Первая стадия - нагнетание воздуха в легкие и обмен газов в легких - носит еще название внешнего дыхания. Вторая стадия - транспорт газов кровью - осуществляется системой кровообращения. Третья стадия - усвоение кислорода клетками организма - называется тканевым, или внутренним дыханием.

Дыхание

Обмен газов в легких. Легкие представляют собой герметичные мешки, соединенные с трахеей с помощью крупных воздухоносных путей - бронхов. Атмосферный воздух через носовую и ротовую полость проникает в гортань и далее в трахею, после чего разделяется на два потока, один из которых идет к правому легкому, другой к левому (рис. 20). Трахея и бронхи состоят из соединительной ткани и каркаса из хрящевых колец, которые не позволяют этим трубкам перегибаться и перекрывать воздухоносные пути при различных изменениях положения тела. Войдя в легкие, бронхи разделяются на множество ответвлений, каждое из которых вновь делится, образуя так называемое «бронхиальное дерево». Самые тонкие веточки этого «дерева» называются бронхиолами, и на их концах располагаются легочные пузырьки, или альвеолы (рис. 21). Количество альвеол достигает 350 млн., а их общая площадь - 150 м 2 . Именно эта поверхность и представляет собой площадь для обмена газами между кровью и воздухом. Стенки альвеолы состоят из одного слоя эпителиальных клеток, к которому вплотную подходят тончайшие кровеносные капилляры, также состоящие из однослойного эпителия. Такая конструкция благодаря диффузии обеспечивает сравнительно легкое проникновение газов из альвеолярного воздуха в капиллярную кровь (кислород) и в обратном направлении (углекислый газ). Этот газообмен происходит в результате того, что создается градиент концентрации газов (рис. 22). Находящийся в альвеолах воздух содержит относительно большое количество кислорода (103 мм рт. ст.) и малое количество углекислого газа (40 мм рт. ст.). В капиллярах, наоборот, концентрация углекислого газа повышена (46 мм рт. ст.), а кислорода понижена (40 мм рт. ст.), поскольку в этих капиллярах находится венозная кровь, собранная уже после того, как она побывала в тканях и отдала им кислород, получив взамен углекислый газ. Кровь по капиллярам протекает непрерывно, а воздух в альвеолах обновляется при каждом вдохе. Оттекающая от альвеол обогащенная кислородом (до 100 мм рт. ст.) кровь содержит сравнительно мало углекислого газа (40 мм рт. ст.) и вновь готова к осуществлению тканевого газообмена.

Рис. 20. Схема строения легких (А) и легочных альвеол (Б)

А: ] - гортань; 2 - трахея; 3 - бронхи; 4 - бронхиолы; 5 - легкие;

Б: 1 - сосудистая сеть; 2, 3 - альвеолы снаружи и в разрезе; 4 -

бронхиола; 5 - артерия и вена


Рис. 21. Схема ветвления воздухоносных путей (слева). В правой части рисунка приведена кривая суммарной площади поперечного сечения воздухоносных путей на уровне каждого ветвления (3). В начале переходной зоны эта площадь начинает существенно возрастать, что продолжается и в дыхательной зоне. Бр - бронхи; Бл - бронхиолы; КБл - конечные бронхиолы; ДБл - дыхательные бронхиолы; АХ - альвеолярные ходы; А - альвеолы

Рис. 22. Обмен газов в легочных альвеолах: через стенку легочной альвеолы О 2 вдыхаемого воздуха поступает в кровь, а СО 2 венозной крови - в альвеолу; газообмен обеспечивается разностью парциальных давлений (Р) СО 2 и О 2 в венозной крови и в полости легочных альвеол

Чтобы мельчайшие пузырьки - альвеолы - не спадались во время выдоха, их поверхность изнутри покрыта слоем специального вещества, вырабатываемого легочной тканью. Это вещество - сурфактант - уменьшает поверхностное натяжение стенок альвеол. Обычно оно вырабатывается в избыточном количестве, чтобы гарантировать максимально полное использование поверхности легких для газообмена.

Диффузионная способность легких. Градиент концентраций газов по обе стороны альвеолярной стенки является той силой, которая заставляет молекулы кислорода и углекислого газа диффундировать, проникать сквозь эту стенку. Однако при одном и том же атмосферном давлении скорость диффузии молекул зависит не только от градиента, но и от площади соприкосновения альвеол и капилляров, от толщины их стенок, от наличия сурфактанта и ряда других причин. Для того чтобы оценить все эти факторы, с помощью специальных приборов измеряют диффузионную способность легких, которая в зависимости от возраста и функционального состояния человека может изменяться от 20 до 50 мл О 2 /мин/мм рт. ст.

Вентиляционно-перфузионное отношение. Газообмен в легких происходит только в том случае, если воздух в альвеолах периодически (в каждом дыхательном цикле) обновляется, а через легочные капилляры непрерывно течет кровь. Именно по этой причине остановка дыхания, как и остановка кровообращения, в равной мере означают смерть. Непрерывный ток крови через капилляры называется перфузией , а ритмическое поступление новых порций атмосферного воздуха в альвеолы - вентиляцией. Следует подчеркнуть, что воздух в альвеолах по составу весьма существенно отличается от атмосферного: в альвеолярном воздухе гораздо больше углекислого газа и меньше кислорода. Дело в том, что механическая вентиляция легких не затрагивает наиболее глубоких зон, в которых расположены легочные пузырьки, и там газообмен происходит только благодаря диффузии, а потому несколько замедленно. Тем не менее каждый дыхательный цикл приносит в легкие новые порции кислорода и уносит избыток углекислоты. Скорость перфузии легочной ткани кровью должна точно соответствовать скорости вентиляции, чтобы между этими двумя процессами устанавливалось равновесие, иначе либо кровь будет перенасыщена углекислотой и недонасыщена кислородом, либо, наоборот, углекислота будет вымываться из крови. И то и другое плохо, так как дыхательный центр, расположенный в продолговатом мозге, генерирует импульсы, заставляющие дыхательные мышцы осуществлять вдох и выдох, под воздействием рецепторов, измеряющих содержание СО 2 и О 2 в крови. Если уровень СО 2 в крови падает, дыхание может остановиться; если же растет - начинается одышка, человек ощущает удушье. Соотношение между скоростью кровотока через легочные капилляры и скоростью потока воздуха, вентилирующего легкие, называется вентиляционно-перфузионным отношением (ВПО). От него зависит соотношение концентраций О2 и СО2 в выдыхаемом воздухе. Если прибавка СО2 (по сравнению с атмосферным воздухом) в точности соответствует уменьшению содержания кислорода, то ВПО=1, и это повышенный уровень. В норме ВПО составляет 0,7-0,8, т. е. перфузия должна быть несколько интенсивнее, чем вентиляция. Величину ВПО учитывают при выявлении тех или иных заболеваний бронхолегочной системы и системы кровообращения.

Если сознательно резко активизировать дыхание, делая максимально глубокие и частые вдохи-выдохи, то ВПО превысит 1, а человек вскоре почувствует головокружение и может упасть в обморок - это результат «вымывания» избыточных количеств СО 2 из крови и нарушения кислотно-щелочного гомеостаза. Напротив, если усилием воли задержать дыхание, то ВПО составит менее 0,6 и через несколько десятков секунд человек почувствует удушье и императивный позыв к дыханию. В начале мышечной работы ВПО резко изменяется, сначала снижаясь (усиливается перфузия, так как мышцы, начав сокращаться, выдавливают из своих вен добавочные порции крови), а через 15-20 с стремительно увеличиваясь (активизируется дыхательный центр и возрастает вентиляция). Нормализуется ВПО только через 2-3 мин после начала мышечной работы. В конце мышечной работы все эти процессы протекают в обратном порядке. У детей подобная перенастройка системы кислородного снабжения происходит немного быстрее, чем у взрослых, так как размеры тела и соответственно инерционные характеристики сердца, сосудов, легких, мышц и других участвующих в этой реакции структур у детей существенно меньше.

Тканевый газообмен. Кровь, приносящая к тканям кислород, отдает его (по градиенту концентрации) в тканевую жидкость, а оттуда молекулы О 2 проникают в клетки, где и захватываются митохондриями. Чем интенсивнее происходит этот захват, тем быстрее уменьшается содержание кислорода в тканевой жидкости, тем выше становится градиент между артериальной кровью и тканью, тем быстрее кровь отдает кислород, отсоединяющийся при этом от молекулы гемоглобина, которая служила «транспортным средством» для доставки кислорода. Освободившиеся молекулы гемоглобина могут захватывать молекулы СО2, чтобы нести их к легким и там отдавать альвеолярному воздуху. Кислород, вступая в цикл окислительных реакций в митохондриях, в конечном счете оказывается соединенным либо с водородом (образуется Н 2 О), либо с углеродом (образуется СО 2). В свободном виде кислород в организме практически не существует. Весь образующийся в тканях углекислый газ выводится из организма через легкие. Метаболическая вода также частично испаряется с поверхности легких, но может выводиться, кроме того, с потом и мочой.

Дыхательный коэффициент. Соотношение количеств образовавшегося СО 2 и поглощенного О 2 называется дыхательным коэффициентом (ДК) и зависит от того, какие субстраты окисляются в тканях организма. ДК в выдыхаемом воздухе составляет от 0,65 до 1. По сугубо химическим причинам при окислении жиров ДК=0,65; при окислении белков - около 0,85; при окислении углеводов ДК=1,0. Таким образом, по составу выдыхаемого воздуха можно судить о том, какие вещества используются в настоящий момент для выработки энергии клетками организма. Естественно, обычно ДК принимает какое-то промежуточное значение, чаще всего близкое к 0,85, но это не значит, что окисляются белки; скорее это результат одновременного окисления жиров и углеводов. Величина ДК тесно связана с ВПО, между ними есть почти полное соответствие, если не считать периодов, когда ВПО подвергается резким колебаниям. У детей в покое ДК обычно выше, чем у взрослых, что связано со значительно большим участием углеводов в энергетическом обеспечении организма, особенно деятельности нервных структур.

При мышечной работе ДК также может существенно превышать ВПО, если в энергообеспечении участвуют процессы анаэробного гликолиза. В этом случае гомеостатические механизмы (буферные системы крови) приводят к выбросу из организма добавочного количества СО2, что обусловлено не метаболическими нуждами, а гомеостатическими. Такое добавочное выделение СО2 называют «неметаболическим излишком». Его появление в выдыхаемом воздухе означает, что уровень мышечной нагрузки достиг некоего порога, после которого необходимо подключение анаэробных систем энергопродукции («анаэробный порог»). Дети от 7 до 12 лет обладают более высокими относительными показателями анаэробного порога: у них при такой нагрузке выше частота пульса, легочная вентиляция, скорость кровотока, потребление кислорода и т. п. К 12 годам нагрузка, соответствующая анаэробному порогу, резко снижается, а после 17-18 лет не отличается от соответствующей нагрузки у взрослых. Анаэробный порог - один из важнейших показателей аэробной производительности человека, а также та минимальная нагрузка, которая способна обеспечить достижение тренировочного эффекта.

Внешнее дыхание - это проявления процесса дыхания, которые хорошо заметны без всяких приборов, поскольку воздух входит в воздухоносные пути и выходит из них только благодаря тому, что изменяется форма и объем грудной клетки. Что же заставляет воздух проникать вглубь организма, достигая, в конечном счете, мельчайших легочных пузырьков? В данном случае действует сила, вызванная разницей в давлении внутри грудной клетки и в окружающей атмосфере. Легкие окружены соединительно-тканной оболочкой, которая называется плеврой, причем между легкими и плевральным мешком находится плевральная жидкость, которая служит смазкой и герметиком. Внутриплевральное пространство герметично, не сообщается с соседними полостями и проходящими через грудную клетку пищеварительными и кровеносными трубами. Герметична и вся грудная клетка, отделенная от брюшной полости не только серозной оболочкой, но и крупной кольцевой мышцей - диафрагмой. Поэтому усилия дыхательных мышц, приводящие даже к небольшому увеличению ее объема во время вдоха, обеспечивают достаточно существенное разряжение внутри плевральной полости, и именно под действием этого разряжения воздух входит в ротовую и носовую полость и проникает далее через гортань, трахею, бронхи и бронхиолы в легочную ткань.

Организация дыхательного акта. Три группы мышц участвуют в организации дыхательного акта, т. е. в перемещении стенок грудной клетки и брюшной полости: инспираторные (обеспечивающие вдох) наружные межреберные мышцы; экспираторные (обеспечивающие выдох) внутренние межреберные мышцы и диафрагма, а также мышцы брюшной стенки. Слаженное сокращение этих мышц под управлением дыхательного центра, который расположен в продолговатом мозге, вызывает перемещение ребер несколько вперед и вверх относительно их положения в момент выдоха, грудина приподнимается, а диафрагма вжимается внутрь брюшной полости. Таким образом, общий объем грудной клетки существенно увеличивается, там создается довольно высокое разряжение, и воздух из атмосферы устремляется внутрь легких. В конце вдоха импульсация из дыхательного центра к этим мышцам прекращается, и ребра под силой собственной тяжести, а диафрагма в результате ее расслабления возвращаются в «нейтральное» положение. Объем грудной клетки уменьшается, там повышается давление, и лишний воздух из легких выбрасывается через те же трубки, через которые он входил. Если по каким-то причинам выдох затруднен, то для облегчения этого процесса подключаются экспираторные мышцы. Работают они и в тех случаях, когда дыхание усиливается или ускоряется под воздействием эмоциональных либо физических нагрузок. Работа дыхательных мышц, как и любая другая мышечная работа, требует затрат энергии. Подсчитано, что при спокойном дыхании на эти нужды расходуется чуть больше 1 % потребляемой организмом энергии.

В зависимости от того, связано ли расширение грудной клетки при нормальном дыхании преимущественно с поднятием ребер или уплощением диафрагмы, различают реберный (грудной) и диафрагмальный (брюшной) типы дыхания. При грудном типе дыхания диафрагма смещается пассивно в соответствии с изменением внутригрудного давления. При брюшном типе мощные сокращения диафрагмы сильно смещают органы брюшной полости, поэтому при вдохе живот «выпячивается». Становление типа дыхания происходит в возрасте 5-7 лет, причем у девочек оно становится, как правило, грудным, а у мальчиков - брюшным.

Легочная вентиляция. Чем крупнее организм и чем сильнее работают дыхательные мышцы, тем большее количество воздуха проходит через легкие за каждый дыхательный цикл. Для оценки легочной вентиляции измеряют минутный объем дыхания, т.е. среднее количество воздуха, которое проходит через дыхательные пути за 1 мин. В покое у взрослого человека эта величина составляет 5-6 л/мин. У новорожденного ребенка минутный объем дыхания составляет 650-700 мл/мин, к концу 1 года жизни достигает 2,6-2,7 л/мин, к 6 годам - 3,5 л/мин, в 10 лет - 4,3 л/мин, а у подростков - 4,9 л/мин. При физической нагрузке минутный объем дыхания может очень существенно увеличиваться, достигая у юношей и взрослых 100 л/мин и более.

Частота и глубина дыхания. Дыхательный акт, состоящий из вдоха и выдоха, имеет две основные характеристики - частоту и глубину. Частота - это количество дыхательных актов в минуту. У взрослого человека эта величина обычно составляет 12-15, хотя она может изменяться в широких пределах. У новорожденных частота дыхания во время сна достигает 50-60 в минуту, к годовалому возрасту снижается до 40-50, затем по мере роста происходит постепенное снижение этого показателя. Так, у детей младшего школьного возраста частота дыхания составляет обычно около 25 циклов в минуту, а у подростков - 18-20. Прямо противоположную тенденцию возрастных изменений демонстрирует дыхательный объем, т.е. мера глубины дыхания. Он представляет собой среднее количество воздуха, которое поступает в легкие за каждый дыхательный цикл. У новорожденных он очень мал - всего 30 мл или даже меньше, к годовалому возрасту увеличивается до 70 мл, в 6 лет становится свыше 150 мл, к 10 годам достигает 240 мл, в 14 лет - 300 мл. У взрослого дыхательный объем в покое не превышает 500 мл. Минутный объем дыхания представляет собой произведение дыхательного объема на частоту дыхания.

Если человек выполняет любую физическую нагрузку, ему требуется дополнительное количество кислорода, соответственно увеличивается минутный объем дыхания. У детей до 10 лет это увеличение обеспечивается в основном учащением дыхания, которое может стать в 3-4 раза более частым, чем дыхание в покое, тогда как дыхательный объем увеличивается только в 1,5-2 раза. У подростков, а тем более у взрослых увеличение минутного объема осуществляется главным образом за счет дыхательного объема, который может увеличиться в несколько раз, а частота дыхания обычно не превышает 50-60 циклов в минуту. Считается, что такой тип реакции системы дыхания более экономичен. По различным критериям эффективность и экономичность внешнего дыхания с возрастом существенно увеличивается, достигая максимальных величин у юношей и девушек 18-20 лет. При этом дыхание юношей, как правило, организовано более эффективно, чем у девушек. На эффективность дыхания и его экономичность большое влияние оказывает физическая тренированность, особенно в тех видах спорта, в которых кислородное обеспечение играет решающую роль. Это стайерский бег, лыжи, плавание, гребля, велосипед, теннис и другие виды, связанные с проявлением выносливости.

При выполнении циклической нагрузки ритм дыхания обычно «подстраивается» под ритм сокращения скелетных мышц - это облегчает работу дыхания и делает ее более эффективной. У детей усвоение ритма движений дыхательной мускулатурой происходит инстинктивно без вмешательства сознания, однако учитель может помочь ребенку, что способствует быстрейшей адаптации к такого рода нагрузке.

При выполнении силовой и статической нагрузки наблюдается так называемый феномен Линдгардта - задержка дыхания во время натуживания с последующим увеличением частоты и глубины дыхания после снятия нагрузки. Не рекомендуется использовать тяжелые силовые и статические нагрузки в тренировке и физическом воспитании детей до 13-14 лет, в том числе и по причине незрелости системы дыхания.

Спирограмма. Если на пути воздуха, входящего в легкие и выходящего из них, установить резиновые меха или легкий колокол, погруженный в воду, то благодаря действию дыхательных мышц это приспособление будет увеличивать свой объем при выдохе и уменьшать при вдохе. Если все соединения при этом будут герметичны (для герметизации ротовой полости используют специальный резиновый загубник или маску, надеваемую на лицо), то можно, прикрепив к подвижной части устройства пишущий инструмент, записать все дыхательные движения. Такой прибор, изобретенный еще в XIX в., называется спирограф, а сделанная с его помощью запись - спирограмма (рис. 23). С помощью спирограммы, сделанной на бумажной ленте, можно количественно измерить важнейшие характеристики внешнего дыхания человека. Легочные объемы и емкости. Благодаря спирограмме можно наглядно увидеть и измерить различные легочные объемы и емкости. Объемами в физиологии дыхания принято называть те показатели, которые динамически изменяются в процессе дыхания и характеризуют функциональное состояние системы дыхания. Емкость - это не изменяемый в короткое время резервуар, в рамках которого происходит дыхательный цикл и газообмен. Точкой отсчета для всех легочных объемов и емкостей является уровень спокойного выдоха.

Легочные объемы. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Поэтому человек может как вдохнуть, так и выдохнуть большой дополнительный объем воздуха. Эти объемы носят название соответственно резервный объем вдоха и резервный объем выдоха . Однако даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха. Это - так называемый остаточный объем, который не измеряется с помощью спирограммы (для его измерения используется достаточно сложная техника и расчеты, применяются инертные газы). У взрослого человека он составляет около 1,5 л, у детей - существенно меньше.

Рис. 23. Спирограмма: емкость легких и ее компоненты

А - схема спирограммы: 1 - резервный объем вдоха; 2 - дыхательный объем; 3 - резервный объем выдоха; 4 -- остаточный объем; 5 - функциональная остаточная емкость; 6 - емкость вдоха; 7 - жизненная емкость; 8 - общая емкость легких; Б - объемы и емкости легких: /- юные спортсмены; // - нетренированные школьники (средний возраст 13 лет) (по А. И.Осипову, 1964). Цифры над столбиками - средние величины общей емкости. Цифры в столбиках - средние величины легочных объемов в процентах от общей емкости; цифры слева от столбиков соответствуют обозначениям на спирограмме

Жизненная емкость легких. Суммарная величина резервного объема вдоха, дыхательного объема и резервного объема выдоха составляет жизненную емкость легких (ЖЕЛ) - один из наиболее важных показателей состояния системы дыхания. Для ее измерения используются разнообразной конструкции спирометры, в которые необходимо сделать максимально глубокий выдох после максимально глубокого вдоха - это и будет ЖЕЛ. ЖЕЛ зависит от размеров тела, а потому и от возраста, а также весьма существенно зависит от функционального состояния и физической тренированности организма человека. У мужчин ЖЕЛ выше, чем у женщин, если ни те, ни другие не занимаются спортом, особенно упражнениями на выносливость. Величина ЖЕЛ существенно различается у людей разного телосложения: у брахиморфных типов она сравнительно мала, а у долихоморфных - очень велика. Принято использовать ЖЕЛ в качестве одного из показателей физического развития детей школьного возраста, а также призывников. Измерить ЖЕЛ можно только при активном и сознательном участии ребенка, поэтому данные о детях до 3-летнего возраста практически отсутствуют.

Таблица 9

Жизненная емкость легких у детей и подростков (в мл)

Несмотря на свое название, ЖЕЛ не отражает параметров дыхания в реальных, «жизненных» условиях, так как ни при каких нагрузках человек не дышит, используя полностью резервный объем вдоха и резервный объем выдоха.

Другие емкости. То пространство легких, которое может быть занято воздухом в случае максимально полного вдоха после спокойного выдоха, называется емкость вдоха. Эта емкость складывается из дыхательного объема и резервного объема вдоха.

Резервный объем выдоха и остаточный объем, который никогда не может быть выдохнут, вместе составляют функциональную остаточную емкость (ФОЕ) легких. Физиологический смысл ФОЕ состоит в том, что она играет роль буферной зоны. Благодаря ее наличию в альвеолярном пространстве сглаживаются колебания концентраций О 2 и СО 2 в процессе дыхания. Это стабилизирует функцию легочного газообмена, обеспечивая равномерный поток кислорода из альвеолярного пространства в кровяное русло, а углекислого газа - в обратном направлении.

Общая емкость легких представляет собой сумму ЖЕЛ и остаточного объема, либо всех четырех объемов легких: дыхательного, остаточного, резервных объемов вдоха и выдоха. Общая емкость легких с возрастом увеличивается пропорционально размерам тела.

Управление дыханием. Дыхание - одна из тех функций организма, которые, с одной стороны, осуществляются автоматически, с другой - могут подчиняться сознанию. Автоматическое дыхание обеспечивается дыхательным центром, расположенным в продолговатом мозге. Разрушение дыхательного центра ведет к остановке дыхания. Ритмически возникающие в дыхательном центре импульсы возбуждения передаются по центробежным нейронам к дыхательным мышцам, обеспечивая чередование вдоха и выдоха. Считается, что возникновение периодических импульсов в дыхательном центре обусловлено циклическими обменными процессами в нейронах, из которых состоит эта область головного мозга. Активность дыхательного центра регулируется большим числом врожденных и приобретенных рефлексов, а также импульсами от хеморецепторов, контролирующих напряжение кислорода, углекислого газа и уровень рН в крови, и механорецепторов, отслеживающих степень растяжения дыхательных мышц, легочной ткани и множество других параметров. Рефлекторные дуги устроены таким образом, что завершение вдоха стимулирует начало выдоха, а конец выдоха является рефлекторным стимулом для начала вдоха.

В то же время все эти рефлексы могут быть на некоторое время подавлены за счет активности коры больших полушарий, которая может взять на себя управление дыханием. Такое дыхание называется произвольным. В частности, оно используется при выполнении упражнений дыхательной гимнастики, при нырянии, при попадании в условия загазованности или задымленности и в других случаях, когда требуется адаптация к редко встречающимся факторам. Однако при произвольной задержке дыхания рано или поздно дыхательный центр принимает на себя управление этой функцией и выдает императивный стимул, с которым сознание справиться не может. Это бывает тогда, когда достигнут порог чувствительности дыхательного центра. Чем более зрел и более физически тренирован организм, тем выше этот порог, тем большие отклонения в гомеостазе может выдержать дыхательный центр. Специально натренированные ныряльщики, например, способны задерживать дыхание на 3-4 мин, иногда даже на 5 мин - время, необходимое им для спуска на значительную глубину под воду и поиска там нужного объекта. Так, например, добывают морской жемчуг, кораллы, губку и некоторые другие «дары моря». У детей сознательное управление дыхательным центром возможно после прохождения полуростового скачка, т.е. после 6-7 лет, обычно именно в этом возрасте дети приучаются нырять и плавать теми стилями, которые связаны с задержкой дыхания (кроль, дельфин).

Момент рождения человека - это момент его первого вдоха. Ведь в утробе матери функция внешнего дыхания не могла осуществляться, а потребность в кислороде обеспечивалась за счет его поставки через плаценту из материнского организма. Поэтому, хотя к моменту рождения функциональная система дыхания в норме полностью созревает, она обладает целым рядом особенностей, связанных с актом рождения и условиями жизни в период новорожденности. В частности, активность дыхательного центра у детей в этот период сравнительно низкая и неустановившаяся, поэтому нередко первый вдох ребенок делает не сразу после выхода из родовых путей, а через несколько секунд или даже минут. Иногда для инициации первого вдоха достаточно простого шлепка по ягодицам ребенка, но иногда апноэ (отсутствие дыхания) затягивается, и если это длится несколько минут, может перейти в состоянии асфиксии. Будучи достаточно типичным осложнением процесса родов, асфиксия крайне опасна своими последствиями: кислородное голодание нервных клеток может привести к нарушению их нормальной работы. Вот почему нервная ткань новорожденных гораздо менее чувствительна к недостатку кислорода и избытку кислых продуктов метаболизма. Тем не менее длительная асфиксия (десятки минут) ведет к значительным нарушениям деятельности центральной нервной системы, которые могут сказываться иногда в течение всей последующей жизни.

К возрасту 2-3 лет чувствительность дыхательного центра у детей резко возрастает и становится выше, чем у взрослых. В дальнейшем она постепенно снижается, вплоть до 10-11 лет. В подростковом возрасте вновь отмечается временное увеличение чувствительности дыхательного центра, которое устраняется с завершением пубертатных процессов.

Возрастные изменения структуры и функциональных возможностей органов дыхания. С возрастом все анатомические составляющие системы дыхания увеличиваются в размерах, что и определяет во многом направленность функциональных возрастных изменений. Абсолютные характеристики анатомических просветов трахеи и бронхов, бронхиол, альвеол, общей емкости легких и ее составляющих увеличиваются приблизительно пропорционально увеличению площади поверхности тела. В то же время более высокая интенсивность метаболических, в том числе окислительных, процессов в раннем возрасте требует повышенного поступления кислорода, поэтому относительные показатели системы дыхания отражают значительно большее его напряжение у детей раннего возраста - примерно до 10-11 лет. Однако, несмотря на явно меньшую экономичность и эффективность, дыхательная система у детей работает столь же надежно, как и у взрослых. Этому благоприятствует, в частности, большая диффузионная способность легких, т.е. лучшая проницаемость альвеол и капилляров для молекул кислорода и углекислого газа.

Транспорт газов кровью

Поступивший в организм через легкие кислород должен быть доставлен к его потребителям - всем клеткам тела, находящимся иногда на расстоянии десятков сантиметров (а у некоторых крупных животных - нескольких метров) от «источника». Процессы диффузии не способны транспортировать вещество на такие расстояния с достаточной для потребностей клеточного метаболизма скоростью. Наиболее рациональным способом транспортировки жидкостей и газов является использование трубопроводов. Человек в своей хозяйственной деятельности давно и широко использует трубопроводы везде, где требуется постоянное перемещение значительных количеств воды, нефти, природного газа и многих других веществ. Для того чтобы противостоять силе гравитации, а также преодолеть силу трения в трубах, по которым течет жидкость, человек изобрел насос. А чтобы жидкость текла только в нужном направлении, не возвращаясь обратно в момент снижения напора в трубопроводе, были изобретены клапаны - устройства, похожие на двери, открывающиеся только в одну сторону.

Совершенно так же устроена и главная транспортная система человеческого организма - система кровообращения. Она состоит из труб-сосудов, насоса-сердца и многочисленных клапанов, которые обеспечивают однонаправленность движения крови через сердце и не допускают обратного тока крови в венах. Разветвляясь на мельчайшие трубочки - капилляры, кровеносные сосуды доходят практически до каждой клетки, снабжая их питательными веществами и кислородом и забирая продукты их жизнедеятельности, которые нужны другим клеткам или от которых организму необходимо избавиться. Система кровообращен

Дыхание - обмен газов, с одной стороны, между кровью и внешней средой (наружное дыхание), с другой - обмен газов между кровью и клетками тканей (внутреннее или тканевое дыхание). Посредником между тканями и внешней средой является кровь. Для жизнедеятельности организма нужны не только питательные вещества, но и кислород. Кислород участвует в обмене веществ. В процессе обмена веществ в тканях происходит непрерывное потребление кислорода и образование углекислого газа. Почти все окислительные процессы в тканях, в результате которых высвобождается необходимая для жизнедеятельности организма энергии, протекают с участием кислорода. Поэтому прекращение поступления кислорода приводит к гибели тканей и организма. Наиболее чувствительна к недостатку кислорода нервная ткань.

Главной частью дыхательной системы организма человека являются лёгкие , которые выполняют основную функцию дыхания - обмен кислородом и углекислым газом между организмом и внешней средой обитания . Такой обмен возможен благодаря сочетанию вентиляции, диффузии газов через альвеолярно-капиллярную мембрану и лёгочного кровообращения.

Регуляция дыхания контролируется ЦНС и периферической нервной системой. Кровеносные сосуды содержат специальные хеморецепторы, которые реагируют на концентрацию продуктов обмена, парциальное напряжение кислорода и углекислого газа, pH организма. Благодаря этому осуществляется регуляция объёма вентиляции лёгких, частоты, глубины, длительности вдоха и выдоха.

Условно процесс дыхания делится на 3 этапа:

  1. Внешнее дыхание.
  2. Диффузия кислорода и его транспортировка к тканям.
  3. Тканевое дыхание.

Первый этап дыхания - внешнее дыхание

Осуществление легочного дыхания возможно лишь при условии постоянного поступления в лёгкие из окружающей атмосферы свежего воздуха и выведения воздуха, находящегося в альвеолах. Такой процесс называется легочной вентиляцией.

Органы дыхания (схема). 1 - полость носа (cavitas nasi); 2 - полость рта (cavitas oris); 3 - глотка (pharynx); 4 - гортань (larynx); 5 - трахея (trachea); 6 - бронхи (bronchi); 7 - лёгкие (pulmones)

В процессе внешнего дыхания кислород из внешней среды доставляется в альвеолы лёгких. На адекватность внешнего дыхания влияют многие факторы. Процесс внешнего дыхания начинается с верхних дыхательных путей, которые очищают, согревают и увлажняют вдыхаемый воздух. Эффективность очищения вдыхаемого воздуха зависит от количества и качественного состояния макрофагов, которые содержатся в слизистых оболочках дыхательных путей. Изнутри поверхность верхних дыхательных путей выстлана реснитчатым псевдомногослойным эпителием, который эвакуирует мокроту из верхних дыхательных путей. В норме из трахеи и бронхов за сутки удаляется до 100 мл мокроты.

Очень важную функцию в нормальной работе верхних дыхательных путей играет кашлевый рефлекс, при нарушении которого не происходит своевременного освобождения верхних дыхательных путей от патологического секрета.

Дыхательные пути подразделяются на:

  • верхние дыхательные пути : нос, рот, глотка, гортань;
  • нижние дыхательные пути : трахея, бронхи.

Ёмкость верхних дыхательных путей образует анатомически мёртвое пространство, воздух которого не участвует в газообмене. Объём анатомически мертвого пространства приблизительно равен 150 см 3 (2,2 см 3 на 1 кг массы тела человека).

Вентиляция лёгких зависит от дыхательного обмена и частоты дыхания. Величина вдоха определяется как разница между силой сокращения дыхательных мышц и эластичностью лёгких, которая зависит от поверхностного натяжения жидкости, покрывающей альвеолы и эластичности самой легочной ткани.

Значимость (по убыванию) вентилируемости лёгких во время дыхания:

  • нижний отдел;
  • передний отдел;
  • задний отдел;
  • верхушка.

Второй этап дыхания - диффузия и транспортировка кислорода к тканям

Диффузия кислорода осуществляется через ацинус - структурную единицу лёгкого, который состоит из дыхательной бронхиолы и альвеол. Диффузия кислорода осуществляется за счёт парциальной разности содержания кислорода в альвеолярном воздухе и венозной крови, после чего незначительная часть кислорода растворяется в плазме, а основная часть кислорода связывается с гемоглобином, и транспортируется с током крови к органам и тканям организма. Соседние альвеолы сообщаются между собой порами межальвеолярных перегородок, через которые возможна незначительная вентиляция альвеол с закупоренными слизью ходами, например, при астме.

Альвеолы изнутри покрыты сурфактантом - сложным белковым поверхностно-активным веществом, который очень чувствителен к снижению кровообращения, вентиляции лёгких, уменьшению парциального напряжения кислорода в артериальной крови, что вызывает уменьшение количества сурфактанта, из-за чего нарушается стабильность поверхности альвеол. Сурфактантный комплекс препятствует спадению терминальных бронхиол, осуществляет противоотёчную функцию, играет важную роль в регуляции водного баланса, оказывает защитное действие за счёт противоокислительной активности.

Третий этап дыхания - утилизация кислорода в тканях

Кислород утилизируется в процессе биологического окисления белков, жиров и углеводов, с целью выработки энергии. Молекулярной основой клеточного дыхания является окисление углерода до углекислого газа и перенос атома водорода на атом кислорода с образованием молекулы воды. Это аэробный путь получения энергии, который в организме человека является ведущим (примерно 98% всей энергии, которую получает организм, образуется в условиях аэробного окисления; остальное приходится на анаэробное окисление).

Вариант 1

    анатомия

    физиология

    гигиена

    цитология

    подвижность ключицы

    пятипалая конечность

    комплекс Гольджи

    митохондрия

    рибосома

    эндоплазматическая сеть

А4. Хромосомы находятся в

    в комплексе Гольджи

    в ядре

    в рибосомах

    в эндоплазматической сети

    выполняет функцию опоры тела

    образует железы

    накапливает жир

    образует покровы тела

    клетки имеют плоскую форму

    клетки имеют форму волокон

    образует скелетные мышцы

    опорно-двигательная система

    пищеварительная система

    кровеносная система

    дыхательная система

    мочевыделительная система

    половая система

Г) наличие ногтей

Вариант 2

Выберите один правильный или наиболее полный ответ

    эксперимент

    рефлекс

    эпидемия

    карантин

    в лизосомах

    в митохондриях

    в рибосомах

    в эндоплазматической сети

    4 вида тканей

    6 видов тканей

    7 видов тканей

    Более 7 видов тканей

В1. Верными являются следующие утверждения:

В2. Для эпителиальной ткани характерны следующие функции и особенности строения:

В3. Для мышечной ткани характерны следующие функции и особенности строения

    выполняет защитную функцию

    обеспечивает органы питанием

В4. Защитную функцию выполняют:

    система покровных органов

    опорно-двигательная система

    иммунная система

    кровеносная система

    мочевыделительная система

    половая система

В5. Соотнесите единицы систематики с морфологическими особенностями человека, характерными для этих единиц

В) четырехкамерное сердце

Д) наличие молочных желез

  1. Общий обзор организма человека

Вариант 1

Выберите один правильный или наиболее полный ответ

А1. Функции организма и отдельных органов изучает

    анатомия

    физиология

    гигиена

    цитология

В2. Для эпителиальной ткани характерны следующие функции и особенности строения:

    сильно развито межклеточное вещество

    выполняет функцию опоры тела

    клетки сомкнуты в плотные ряды

    выстилает внутреннюю поверхность сердца

    образует железы

    накапливает жир

А2. Способность человека захватывать и удерживать предметы рукой, обеспечена такой морфологической особенностью, как

    подвижность ключицы

    противопоставление большого пальца

    пятипалая конечность

    усложнение строения головного мозга

В3. Для мышечной ткани характерны следующие функции и особенности строения:

    образует покровы тела

    клетки имеют плоскую форму

    клетки имеют форму волокон

    клетки могут обладать секреторной функцией

    обладает свойством сократимости

    образует скелетные мышцы

А3. Система внутриклеточных мембран, осуществляющая транспорт веществ в клетке, - это

    комплекс Гольджи

    митохондрия

    рибосома

    эндоплазматическая сеть

В4. В обеспечении клеток организма кислородом принимают участие::

    опорно-двигательная система

    пищеварительная система

    кровеносная система

    дыхательная система

    мочевыделительная система

    половая система

А4. Хромосомы находятся в

    в комплексе Гольджи

    в ядре

    в рибосомах

    в эндоплазматической сети

В5. Соотнесите единицы систематики с морфологическими особенностями человека, характерными для этих единиц

    класс Млекопитающие А) пятипалые конечности

    отряд Приматы Б) зубы различаются по строению

В) четырехкамерное сердце

Г) сложное строение больших полушарий переднего мозга

Д) наличие молочных желез

    строение органов изучает анатомия

    строение организма изучает физиология

    физиология изучает функции органов

    анатомия изучает функции органов

    условия жизни и работы людей, обеспечивающие сохранение их здоровья, изучает гигиена

    человеческий организм уникален и не имеет сходства с животными

    Общий обзор организма человека

Вариант 2

Выберите один правильный или наиболее полный ответ

А1. Массовое распространение инфекционного заболевания носит название

    эксперимент

    рефлекс

    эпидемия

    карантин

В2. Для эпителиальной ткани характерны следующие функции и особенности строения:

    содержит очень мало межклеточного вещества

    к этому виду тканей относится жировая ткань

    выстилает внутреннюю поверхность кровеносных сосудов

    обладает секреторной функцией

    клетки могут имеет плоскую форму

    к данному виду тканей относится кровь

А2. Формированию членораздельной речи способствовала такая особенность человеческого скелета, как

    высокая подвижность лучевой кости

    S-образный изгиб позвоночника

    наличие пятипалых конечностей

    наличие подбородочного выступа

В3. Для мышечной ткани характерны следующие функции и особенности строения

    выстилает пищеварительный тракт

    выполняет защитную функцию

    может состоят из многоядерных волокон

    обеспечивает органы питанием

    подразделяется на гладкую и поперечнополосатую

    обеспечивает произвольные движения тела

А3. Разложение сложных органических веществ до более простых органических веществ происходит

    в лизосомах

    в митохондриях

    в рибосомах

    в эндоплазматической сети

В4. В обеспечении клеток организма кислородом принимают участие::

Защитную функцию выполняют:

    система покровных органов

    опорно-двигательная система

    иммунная система

    кровеносная система

    мочевыделительная система

    половая система

А4. В организме человека присутствуют

    4 вида тканей

    6 видов тканей

    7 видов тканей

    Более 7 видов тканей

В5. Соотнесите единицы систематики с морфологическими особенностями человека, характерными для этих единиц

    класс Млекопитающие А) зубы различаются по функциям

    отряд Приматы Б) наличие диафрагмы

В) шаровидная форма плечевого сустава

Г) наличие ногтей

Д) полное разделение артериальной и венозной крови

В1. Верными являются следующие утверждения :

    строение органов изучает физиология

    строение организма изучает анатомия

    функции организма изучает физиология

    функции организма изучает анатомия

    условия жизни, обеспечивающие поддержания здоровья людей, изучает физиология

    у человеческого организма имеется много черт сходства с организмом животных

    Общий обзор организма человека

Вариант 3

Выберите один правильный или наиболее полный ответ

А1. Условия, способствующие сохранению и укреплению здоровья людей, изучает

    анатомия

    физиология

    гигиена

    цитология

    к данному виду тканей относится жировая ткань

    образует железы

    обеспечивает органы питанием

    клетки сомкнуты в плотные ряды

    сильно развито межклеточное вещество

    выполняет функцию опоры тела

А2.Большая амплитуда движений руки возможна благодаря

    высокой подвижности ключицы

    противопоставлению большого пальца

    наличию ногтей

    усложнению строения головного мозга

    формирует головной мозг

    обладает свойством сократимости

    клетки имеют дендриты

    клетки имеют форму волокон

    клетки образуют синапсы

    формирует нервы

А3. Синтез белков происходит

    в комплексе Гольджи

    в митохондриях

    в рибосомах

    в эндоплазматической сети

В4. В обеспечении клеток организма кислородом принимают участие:

    опорно-двигательная система

    пищеварительная система

    кровеносная система

    дыхательная система

    мочевыделительная система

    половая система

А4. Гены находятся

    в хромосомах

    в рибосомах

    в комплексе Гольджи

    в лизосомах

В5. Соотнесите единицы систематики с морфологическими особенностями человека, характерными для этих единиц

1)вид Человек разумный А) длинные конечности

2)семейство Человекообразные

обезьяны Б) размер клыков равен размеру резцов

В) срастание крестцовых позвонков в единую кость

Г) на ноге большой палец не противопоставлен остальным

Д) кости нижних конечностей значительно массивнее костей передних конечностей

В1. Верными являются следующие утверждения :

    нуклеиновые кислоты определяют химический состав белков

    белки определяют химический состав нуклеиновых кислот

    ферменты являются белками

    ферменты являются катализаторами

    в ходе химической реакции происходит значительный расход катализатора

    Рост – это качественные изменения в организме

    Общий обзор организма человека

Вариант 4

Выберите один правильный или наиболее полный ответ

А1. Запрещения въезда на территорию, где появилась опасная инфекция, носит название

    эксперимент

    рефлекс

    эпидемия

    карантин

В2. Для соединительной ткани характерны следующие функции и особенности строения:

    выстилает внутреннюю поверхность сердца

    к данному виду тканей относится кровь

    выстилает внутреннюю поверхность кровеносных сосудов

    выстилает дыхательные пути

    обеспечивает органы кислородом

    накапливает жир

А2. Прямохождение возможно благодаря такой особенности человеческого скелета, как

    высокая подвижность лучевой кости

    S-образный изгиб позвоночника

    наличие пятипалых конечностей

    наличие подбородочного выступа

В3. Для нервной ткани характерны следующие функции и особенности строения:

    формирует спинной мозг

    состоит из многоядерных волокон

    клетки имеют по одному аксону

    в своем составе имеют нейроглию

    образуют скелетные мышцы

    представлена клетками, которые называют нейронами

А3. Важную роль в делении клетки играет

    эндоплазматическая сеть

    комплекс Гольджи

    клеточный центр

    клеточная мембрана

В4. В обеспечении клеток организма кислородом принимают участие::

    опорно-двигательная система

    пищеварительная система

    кровеносная система

    дыхательная система

    мочевыделительная система

    половая система

А4. В организме человека присутствует

    4 системы органов

    6 систем органов

    7 систем органов

    Более 7 систем органов

В5. Соотнесите единицы систематики с морфологическими особенностями человека, характерными для этих единиц

    Вид Человек разумный А) объем мозгового отдела черепа

значительно превышает объем лицевого

    Семейство Человекообразные Б) редукция хвоста

обезьяны

В) наличие подбородочного выступа

Г) сводчатая стопа

Д) увеличение числа крестцовых позвонков

В1. Верными являются следующие утверждения :

    все химические реакции в клетке происходят с участием ферментов

    химические реакции, протекающие в клетке, не требуют участия ферментов

    ферменты являются углеводами

    некоторые белки способны значительно ускорять протекание химических реакций в клетке

    катализатор не расходуется в ходе химической реакции

    рост – это количественные изменения в организме

Ответы

Вариант 1

Вариант 2

А1

А2

А2

А3

А3

А4

А4

В1

В1

В2

В2

В3

В3

В4

В4

В5

В5

А1

Вариант 3

Вариант 4

А1

А2

А2

А3

А3

А4

А4

В1

В1

В2

В2

В3

В3

В4

В4

В5

В5

А1

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то