Как рассчитать резонансный импульсный блок питания. LLC Резонансный ИИП на базе IRS27952. Принципиальная схема резонансного преобразователя напряжения

Технология MICOR. Новое поколение источников питания на основе явления резонанса

Метод, использующий широтно-импульсную модуляцию (ШИМ), является ответом на поиски практически совершенного стабилизированного источника питания. Известно, что в импульсном источнике ключ либо включен, либо выключен и управление осуществляется с нулевым рассеянием мощности, в отличие от линейного стабилизатора, где стабилизация происходит из-за рассеяния мощности в проходном элементе. В реальных условиях ШИМ дает разумный подход к переключению без потерь за счет более низкой частоты переключения, например в диапазоне 20–40 кГц. Если посмотреть на ситуацию с другой стороны, можно сказать, почему этот частотный диапазон так долго был популярен.

От самого начала стабилизации с помощью ШИМ конструкторы пытались продвигаться в сторону более высоких частот, поскольку при этом можно уменьшить размеры, вес и стоимость магнитного сердечника и конденсаторов фильтра.

При высокой частоте переключения появляются и другие преимущества. Используя более высокие частоты, можно ожидать уменьшения радиопомех и электромагнитных шумов; меньших проблем при экранировке, развязке, изоляции и ограничении в схеме. Можно также ожидать более быстрого срабатывания, а также снижения выходного сопротивления и величины пульсаций.

Главным препятствием на пути применения более высоких частот были практические трудности создания быстрых и достаточно мощных переключателей. Из-за того что невозможно дости чь мгновенного включения и выключения коммутатора, на нем во время переключения имеется напряжение и одновременно через него протекает ток. Другими словами, трапецеидальные, а не прямоугольные колебания характеризуют процесс переключения. Это, в свою очередь, приводит к потерям переключения, которые сводят на нет теоретически высокий КПД идеального коммутатора, который мгновенно включается, имеет нулевое сопротивление во включенном состоянии и мгновенно выключается. На рис. 1 сравниваются ШИМ и режим переключения в резонансном режиме, который будет рассмотрен подробнее.

Из сказанного выше очевидно, что на идеальном переключателе не должно быть никакого падения напряжения, в то время когда он включен. Все эти рассуждения говорят о том, что высокий КПД был труднодостижимой задачей, особенно при высоких частотах переключения до тех пор, пока не был достигнут прогресс в создании импульсных полупроводниковых приборов.

Следует указать также, что одновременно был необходим прогресс в создании других устройств, таких, как диоды, трансформаторы и конденсаторы.

Надо отдать должное работникам всех областей техники: частота переключения при использовании ШИМ была повышена до 500 кГц. Тем не менее на высоких частотах, скажем на частоте 150 кГц, лучше рассмотреть другой метод. Итак, мы приходим к резонансному режиму работы источника питания.

Стабилизированный источник питания, использующий резонансный режим, действительно представляет собой большой скачок вперед в развитии технологии. Хотя надо сказать, что использование резонансных явлений в инверторах, преобразователях и источниках питания предшествует эре полупроводников. Оказалось, что при использовании резонансных явлений часто удавалось получать хорошие результаты.

Например, в первых телевизорах необходимые высокие напряжения для кинескопа получали с помощью радиочастотного источника питания.

Это был работающий на частоте от 150 до 300 кГц генератор синусоидальных колебаний на электронной лампе, в котором повышение переменного напряжения достигалось в резонансном радиочастотном трансформаторе. По существу, подобные схемы все еще используются для создания напряжений, по крайней мере нескольких сотен тысяч вольт для различных промышленных и научно-исследовательских целей. Более высокие напряжения часто достигаются благодаря совместному применению резонансного режима работы и диодного умножителя напряжения.

Давно известно, что резонансные выходные цепи инвертора стабилизируют работу электродвигателей и сварочного оборудования. Обычно в разрыв провода, ведущего от источника постоянного напряжения к инвертору, включалась катушка с большой индуктивностью. При этом инвертор ведет себя по отношению к нагрузке как источник тока, что дает возможность легче соответствовать условию существования резонансных явлений. В этом случае существующие тиристорные инверторы правильнее назвать квазирезонансными: колебательный контур периодически подвергается ударному возбуждению, но непрерывные колебания отсутствуют. Между импульсами возбуждения колебательный контур отдает запасенную энергию в нагрузку.

Из сказанного выше ясно, что широкое использование резонансного режима работы началось после создания специализированных ИС управления. Эти ИС освободили конструкторов от проблем со сбоями, которые неизбежно сопутствуют стремлению использовать резонансный режим на частотах несколько сот килогерц или несколько мегагерц, где малые размеры компонент могут дать заметное сокращение габаритов, веса и стоимости.

В 2010 году нашими специалистами на резонансной системе работы был создан ряд сварочных машин для ручной дуговой сварки: Handy-190, Handy-200, X-350 Шторм (рис. 2).

В настоящее время на основе такой технологии конструируются машины для полуавтоматической и автоматической сварки (рис. 3).

Такое оборудование имеет ряд технологических преимуществ:

  • почти «идеальная» внешняя вольтамперная характеристика источника питания, более эластичная и мягкая дуга благодаря резонансной структуре управления;
  • уверенное зажигание и комфортная сварка для всех типов электродов;
  • значительно более высокий КПД (более низкое потребление электроэнергии);
  • возможность более точного управления переносом капли за счет мгновенной (1,5 МГц) реакции схемы управления на внешние возмущения (дуги), а как следствие – значительное уменьшение разбрызгивания, стабильное горение сварочной дуги во всех пространственных положениях.

Рис. 1. Осциллограммы, показывающие разницу между ШИМ (слева) и резонансным режимом (справа). При ШИМ потери переключения появляются из-за одновременного протекания тока через коммутатор и наличия напряжения на нем.

Обратите внимание, что эта ситуация отсутствует при резонансном режиме работы, который для стабилизации напряжения использует частотную модуляцию (ЧМ)

Рис. 2. Handy-190 Micor

Рис. 3. Основная схема резонансного преобразователя

Описываемое устройство обеспечивает исключительно высокий КПД преобразования, допускает регулирование выходного напряжения и его стабилизацию, устойчиво работает при вариации мощности нагрузки. Интересен и незаслуженно мало распространен этот вид преобразователей — квазирезонансный, который в значительной мере избавлен от недостатков других популярных схем. Идея создания такого преобразователя не нова, но практическая реализация стала целесообразной сравнительно недавно, после появления мощных высоковольтных транзисторов, допускающих значительный импульсный ток коллектора при напряжении насыщения около 1,5 В. Главная отличительная особенность и основное преимущество этого вида источника питания — высокий КПД преобразователя напряжения, достигающий 97...98% без учета потерь на выпрямителе вторичной цепи, которые, в основном, определяет ток нагрузки.

От обычного импульсного преобразователя, у которого к моменту закрывания переключательных транзисторов ток, протекающий через них, максимален, квазирезонансный отличается тем, что к моменту закрывания транзисторов их коллекторный ток близок к нулю. Причем уменьшение тока к моменту закрывания обеспечивают реактивные элементы устройства. От резонансного он отличается тем, что частота преобразования не определяется резонансной частотой коллекторной нагрузки. Благодаря этому можно регулировать выходное напряжение изменением частоты преобразования и реализовывать стабилизацию этого напряжения. Поскольку к моменту закрывания транзистора реактивные элементы снижают до минимума ток коллектора, базовый ток также будет минимальным и, следовательно, время закрывания транзистора уменьшается до значения времени его открывания. Таким образом, полностью снимается проблема сквозного тока, возникающего при переключении. На рис. 4.22 показана принципиальная схема автогенераторного нестабилизированного блока питания.

Основные технические характеристики:

Общий КПД блока, %..................................................................92;

Напряжение на выходе, В, при сопротивлении нагрузки 8 Ом....... 18;

Рабочая частота преобразователя, кГц.........................................20;

Максимальная выходная мощность, Вт...........................................55;

Максимальная амплитуда пульсации выходного напряжения с рабочей частотой, В

Основная доля потерь мощности в блоке падает на нагревание" выпрямительных диодов вторичной цепи, а КПД самого преобразователя таков, что нет необходимости в теплоотводах для транзисторов. Мощность потерь на каждом из них не превышает 0,4 Вт. Специального отбора транзисторов по каким-либо параметрам также не требуется. При замыкании выхода или превышении максимальной выходной мощности генерация срывается, защищая транзисторы от перегревания и пробоя.

Фильтр, состоящий из конденсаторов С1...СЗ и дросселя LI, L2, предназначен для защиты питающей сети от высокочастотных помех со стороны преобразователя. Запуск автогенератора обеспечивает цепь R4, С6 и конденсатор С5. Генерация колебаний происходит в результате действия положительной ОС через трансформатор Т1, а частоту их определяют индуктивность первичной обмотки этого трансформатора и сопротивление резистора R3 (при увеличении сопротивления частота увеличивается).

Дроссели LI, L2 и трансформатор Т1 наматывают на одинаковых кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Обмотки дросселя выполняют одновременно, «в два провода», проводом ПЭЛШО-0,25; число витков — 20. Обмотка I трансформатора TI содержит 200 витков провода ПЭВ-2-0,1, намотанных внавал, равномерно по всему кольцу. Обмотки II и III намотаны «в два провода» — 4 витка провода ПЭЛШО-0,25; обмотка IV представляет собой виток такого же провода. Для трансформатора Т2 использован кольцевой магнитопровод К28х16х9 из феррита 3000НН. Обмотка I содержит 130 витков провода ПЭЛИ10-0,25, уложенных виток к витку. Обмотки II и III — по 25 витков провода ПЭЛШО-0,56; намотка — «в два провода», равномерно по кольцу.

Дроссель L3 содержит 20 витков провода ПЭЛИ10-0,25, намотанных на двух, сложенных вместе кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Диоды VD7, VD8 необходимо установить на теплоотводы площадью рассеяния не менее 2 см2 каждый.

Описанное устройство было разработано для использования совместно с аналоговыми стабилизаторами на различные значения напряжения, поэтому потребности в глубоком подавлении пульсаций на выходе блока не возникало. Пульсации можно уменьшить до необходимого уровня, воспользовавшись обычными в таких случаях LC-фильтрами, как, например, в другом варианте этого преобразователя с такими основными техническими характеристиками:

Номинальное выходное напряжение, В.............................................5,

Максимальный выходной ток, А...................................................... 2;

Максимальная амплитуда пульсации, мВ........................................50;

Изменение выходного напряжения, мВ, не более, при изменении тока нагрузки

от 0,5 до 2 А и напряжения сети от 190 до 250 В........................150;

Максимальная частота преобразования, кГц.................................. 20.

Схема стабилизированного блока питания на основе квазирезо-нансного преобразователя представлена на рис. 4.23.

Выходное напряжение стабилизируется соответствующим изменением рабочей частоты преобразователя. Как и в предыдущем блоке, мощные транзисторы VT1 и VT2 в теплоотводах не нуждаются. Симметричное управление этими транзисторами реализовано с помощью отдельного задающего генератора импульсов, собранного на микросхеме DDI. Триггер DD1.1 работает в собственно генераторе.

Импульсы имеют постоянную длительность, заданную цепью R7, С12. Период же изменяется цепью ОС, в которую входит оптрон U1, так что напряжение на выходе блока поддерживается постоянным. Минимальный период задает цепь R8, С13. Триггер DDI.2 делит частоту следования этих импульсов на два, и напряжение формы «меандр» подается с прямого выхода на транзисторный усилитель тока VT4, VT5. Далее усиленные по току управляющие импульсы дифференцирует цепь R2, С7, а затем, уже укороченные до длительности примерно 1 мкс, они поступают через трансформатор Т1 в базовую цепь транзисторов VT1, VT2 преобразователя. Эти короткие импульсы служат лишь для переключения транзисторов — закрывания одного из них и открывания другого.

Кроме того, основная мощность от генератора возбуждения потребляется только в моменты переключения мощных транзисторов, поэтому средний ток, потребляемый им, мал и не превышает 3 мА с учетом тока стабилитрона VD5. Это и позволяет питать его прямо от первичной сети через гасящий резистор R1. Транзистор VT3 является усилителем напряжения сигнала управления, как в компенсационном стабилизаторе. Коэффициент стабилизации выходного напряжения блока прямо пропорционален статическому коэффициенту передачи тока этого транзистора.

Применение транзисторного оптрона U1 обеспечивает надежную гальваническую развязку вторичной цепи от сети и высокую помехозащищенность по входу управления задающего генератора. После очередного переключения транзисторов VT1, VT2 начинает подзаряжаться конденсатор СЮ и напряжение на базе транзистора VT3 начинает увеличиваться, коллекторный ток тоже увеличивается. В результате открывается транзистор оптрона, поддерживая в разряженном состоянии конденсатор С13 задающего генератора. После закрывания выпрямительных диодов VD8, VD9 конденсатор СЮ начинает разряжаться на нагрузку и напряжение на нем падает. Транзистор VT3 закрывается, в результате чего начинается зарядка конденсатора С13 через резистор R8. Как только конденсатор зарядится до напряжения переключения триггера DD1.1, на его прямом выходе установится высокий уровень напряжения. В этот момент происходит очередное переключение транзисторов VT1, VT2, а также разрядка конденсатора СИ через открывшийся транзистор оптрона.

Начинается очередной процесс подзарядки конденсатора СЮ, а триггер DD1.1 через 3...4 мкс снова вернется в нулевое состояние благодаря малой постоянной времени цепи R7, С12, после чего весь цикл управления повторяется, независимо от того, какой из транзисторов — VT1 или VT2 — открыт в текущий полу период. При включении источника, в начальный момент, когда конденсатор СЮ полностью разряжен, тока через светодиод оптрона нет, частота генерации максимальна и определена в основном постоянной времени цепи R8, С13 (постоянная времени цепи R7, С12 в несколько раз меньше). При указанных на схеме номиналах этих элементов эта частота будет около 40 кГц, а после ее деления триггером DDI.2 — 20 кГц. После зарядки конденсатора СЮ до рабочего напряжения в работу вступает стабилизирующая петля ОС на элементах VD10, VT3, U1, после чего и частота преобразования уже будет зависеть от входного напряжения и тока нагрузки. Колебания напряжения на конденсаторе СЮ сглаживает фильтр L4, С9. Дроссели LI, L2 и L3 — такие же, как в предыдущем блоке.

Трансформатор Т1 выполнен на двух сложенных вместе кольцевых магнитопроводах К12x8x3 из феррита 2000НМ. Первичная обмотка намотана внавал равномерно по всему кольцу и содержит 320 витков провода ПЭВ-2-0,08. Обмотки II и III содержат по 40 витков провода ПЭЛ1110-0,15; их наматывают «в два провода». Обмотка IV состоит из 8 витков провода ПЭЛШО-0,25. Трансформатор Т2 выполнен на кольцевом магнитопроводе К28х16х9 из феррита 3000НН. Обмотка I — 120 витков провода ПЭЛШО-0,15, а II и III — по 6 витков провода ПЭЛ1110-0,56, намотанных «в два провода». Вместо провода ПЭЛШО можно использовать провод ПЭВ-2 соответствующего диаметра, но при этом между обмотками необходимо прокладывать два-три слоя лакоткани.

Дроссель L4 содержит 25 витков провода ПЭВ-2-0,56, намотанных на кольцевой магнитопровод К12х6х4,5 из феррита 100НН1. Подойдет также любой готовый дроссель индуктивностью 30...60 мкГн на ток насыщения не менее 3 А и рабочую частоту 20 кГц. Все постоянные резисторы — MJIT. Резистор R4 — подстроенный, любого типа. Конденсаторы С1...С4, С8 — К73-17, С5, С6, С9, СЮ - К50-24, остальные - КМ-6. Стабилитрон КС212К можно заменить на КС212Ж или КС512А. Диоды VD8, VD9 необходимо установить на радиаторы площадью рассеяния не менее 20 см2 каждый. КПД обоих блоков можно повысить, если вместо диодов КД213А использовать диоды Шоттки, например, любые из серии КД2997. В этом случае теплоотводы для диодов не потребуются.

Использование: разработка высокочастотных импульсных источников питания. Сущность изобретения: источник питания держит ключевой транзисторный преобразователь 1 напряжения, выполненный в виде полумостовой схемы на транзисторах 4,5 и конденсаторах 6,7 и блок 25 управления частотой, выполненный в виде последовательно соединенных узла 26 преобразования напряжения в сопротивление и узла 27 преобразования сопротивления в частоту. В выходной цепи преобразователя 1 включен резонансный контур, выполненный на дросселе 8 и конденсаторах 9, 10. Стабилизация изменения рабочей частоты преобразователя 1 в зависимости от изменения выходного напряжения. Формирование специальной формы базового тока транзисторов 4, 5 с помощью блока 25 и цепочек, выполненных на элементах 15-22, снижает потери как при включенном, ток и при выключенном транзисторах 4, 5 преобразователя 1. 3 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и может быть использовано при разработке высококачественных импульсных источников питания. Известен импульсный стабилизатор напряжения, содержащий двухтактный полумостовой преобразователь напряжения, входом соединенный со входными выводами, а выходом через выпрямитель и фильтр с выходными выводами, широтно-импульсный модулятор, выходы которого подключены к управляющим входам двухтактного полумостового преобразователя напряжения, генератор прямоугольных колебаний, формирователь пилообразного напряжения, источник опорного напряжения и два транзистора (1). В известном устройстве решена техническая задача повышение КПД за счет использования для сравнения в широтно-импульсном модуляторе переменных напряжений: прямоугольного опорного и пилообразного, пропорционального входному напряжению. Получение таких напряжений и их сравнение требует меньше энергетических затрат. А использование тока источника опорного напряжения одновременно для управления транзисторами двухтактного полумостового преобразователя напряжения, наряду с применением пассивного ШИМ, дополнительно повышает КПД. Источники питания с ШИМ в настоящее время являются превалирующими. Однако они характеризуются слишком высокими потерями, поскольку относятся к схемам с так называемым жестким переключением. При жестком переключении включенный транзисторный ключ выключается в момент, когда через него протекает ток, а выключенный транзисторный ключ включается, когда на нем имеется напряжение и поэтому, чем чаще этот ключ включается и выключается, тем больше потери. При этом время переключения транзистора (длительность включения или выключения) должно быть возможно меньше. Таким образом недостатком известного устройства являются высокие потери, т.е. низкий КПД. В идеале для того, чтобы потери были минимальными, транзисторный ключ должен выключаться в тот момент, когда ток через него равен нулю (переключение при нулевом токе) и включаться, когда напряжение на нем равно нулю (переключение при нулевом напряжении). В настоящее время наилучшим решением для высокочастотных импульсных источников питания является использование резонансных схем. В отличие от источников питания с ШИМ резонансных схем "смягчают" режим переключения и таким образом способствуют уменьшению потерь на переключение. В результате резонансные источники питания при одной и той же рабочей частоте обеспечивают более высокий КПД. Известен резонансный источник питания, содержащий ключевой транзисторный преобразователь напряжения, входом соединений с входными выводами и выполненный в виде полумостовой схемы, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе и первом конденсаторе и второго конденсатора, причем параллельно первому конденсатору включена первичная обмотка выходного трансформатора, вторичная обмотка которого через выпрямитель и фильтр соединена с выходными выводами, и блок управления частотой, выходы которого подключены к управляющим входам ключевого транзисторного преобразователя напряжения, силовые выводы транзисторов которого шунтированы блокирующими диодами (2). Известный источник питания является аналогом, наиболее близким к предлагаемому изобретению по совокупности существенных признаков. Однако и известный источник питания обладает значительными потерями при переключении, за счет того, что блок управления частотой вырабатывает колебания прямоугольной формы и, следовательно, ток управления транзистора преобразователя также имеет прямоугольную форму. Технической задачей данного изобретения является снижение потерь при переключении транзисторов ключевого транзисторного преобразователя напряжения и снижение мощности, потребляемой блоком управления частотой. Технический результат, который может быть получен при использовании изобретения, заключается в повышении КПД резонансного источника питания. Поставленная техническая задача достигается тем, что в резонансном источнике питания, содержащем ключевой транзистор преобразователь напряжения, входом соединений с выходами выводами и выполненный в виде полумостовой схемы, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе и первом конденсаторе и второго конденсатора, причем параллельно первому конденсатору включена первичная обмотка выходного трансформатора, вторичная обмотка которого через выпрямитель и фильтр соединена с выходными выводами, и блок управления частотой, выходы которого подключены к управляющим входам ключевого транзисторного преобразователя напряжения, силовые выводы транзисторов которого шунтированы блокирующими диодами, блок управления частотой выполнен в виде последовательно соединенных двух базовых резисторов и диода и на дополнительном конденсаторе, включенном между общей точкой резисторов и свободным выводом диода, при этом управляющие входы транзисторов через соответствующие цепочки формирования базового тока соединены с соответствующими управляющими входами ключевого транзисторного преобразователя напряжения, а узел преобразования сопротивления в частоту выполнен в виде парафазного мультивибратора на четырех логических инверторах, третьим и четвертым конденсаторах, на дополнительном транзисторе и трех резисторах, причем логические инверторы соединены попарно-последовательно, соответственно, первый со вторым и третий с четвертым, третий конденсатор включен между выходом первого и входом третьего логических инверторов, а четвертый конденсатор включен между выходом третьего и выходом первого логических инверторов, первый резистор включен параллельно выходу узла преобразователя напряжения в сопротивление, через второй и третий резисторы соединенному с выходами, соответственно, первого и третьего логических инверторов, выходы второго и четвертого логических инверторов соединены с первичной обмоткой дополнительного трансформатора, две вторичные обмотки которого использованы в качестве выходов узла преобразования сопротивления в частоту и выходов блока управления частотой, входом в качестве которого использован вход узла преобразования напряжения в сопротивление, подключенный к выходным выводам. Кроме того, узел преобразования напряжения в сопротивление выполнен на дополнительном транзисторе, выход которого использован в качестве выхода узла преобразования напряжения в сопротивление, переменном резисторе, использованном в качестве входа узла преобразования напряжения в сопротивление и четвертом резисторе, включенном между входом и выходом узла преобразования напряжения в сопротивление, причем, регулировочный вывод переменного резистора соединен с базой дополнительного транзистора. Логические инверторы могут быть выполнены на элементах 2И-НЕ. Для обеспечения запуска преобразователя напряжения, дополнительный трансформатор снабжен пусковой обмоткой, включенной в выходную цепь ключевого транзисторного преобразователя напряжения последовательно с резонансным контуром. Изобретение иллюстрируется чертежами, где на фиг. 1 представлена схема резонансного источника питания, на фиг. 2 форма базового тока транзисторов ключевого транзисторного преобразователя напряжения, на фиг. 3 его регулировочная характеристика. Резонансный источник питания (фиг. 1) содержит ключевой транзисторный преобразователь 1 напряжения, входом соединенный с выходными выводами 2, 3 и выполненный в виде полумостовой схемы на транзисторах 4, 5 и конденсаторах 6, 7, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе 8 и первом конденсаторе 9 и второго конденсатора 10, выходной трансформатор 11, первичная обмотка которая подключена параллельно конденсатору 9, а вторичная -через выпрямитель 12 и фильтр 13 соединена с выходом ключевого транзисторного преобразователя напряжения, подключенным к выходным выводам, к которым подключена нагрузка 14, цепочки формирования базового тока, выполненные в виде последовательно соединенных базовых резисторов 15 и 16, 17, 18 и диодов 19 и 20, и на дополнительных конденсаторах 21 и 22, включенных между общей точкой резисторов 15, 16 и 17, 18 и свободными выводами диодов 19 и 20 соответственно, блокирующие диоды 23 и 24, шунтирующие силовые выводы транзисторов 4 и 5, блок управления частотой 25, выполненный в виде последовательно соединенных узлов преобразования напряжения в сопротивление 26 и узла преобразования сопротивления в частоту 27. Узел 27 преобразования сопротивления в частоту содержит парафазный мультивибратор на четырех логических инверторах 28, 29, 30, 31, третьем конденсаторе 32, четвертом конденсаторе 33, дополнительном трансформаторе 34 и трех резисторах 35, 36, 37, причем логические инверторы соединены попарно-последовательно, 28 с 29 и 30 с 31, третий конденсатор 32 включен между выходом логического инвертора 28 и входом логического инвертора 30, четвертый конденсатор 33 включен между выходом логического инвертора 30 и входом логического инвертора 28, первый резистор 35 включен параллельно выходу узла 26 преобразования напряжения в сопротивление, через второй резистор 36 и третий резистор 37, соединенные со входами, соответственно, логического инвертора 28 и логического инвертора 30, выходы логического инвертора 29 и логического инвертора 31 соединены с первичной обмоткой 38 дополнительного трансформатора 34, вторичные обмотки 39 и 40 которого использованы в качестве выходов узла 27 преобразования сопротивления в частоту и выходы блока 25 управления частотой. Логические инверторы 28, 29, 30, 31 могут быть выполнены, например, на элементах 2И-НЕ. В качестве входа блока 25 управления частотой использован вход узла 26 преобразования напряжения в сопротивление, выполненного на дополнительном транзисторе 41, выход которого использован в качестве выхода узла 26 преобразования напряжение в сопротивление, на переменном резисторе 42, использованном в качестве входа узла 26 преобразования напряжения в сопротивлении, и четвертом резисторе 43, включенном между входом и выходом узла 26 преобразования напряжения в сопротивление, причем регулировочный вывод переменного резистора 42 соединен с базой дополнительного транзистора 41. Вход блока 25 управления частотой соединен с нагрузкой 14. Для обеспечения пуска ключевого транзисторного преобразователя напряжения 1 дополнительный трансформатор 34 снабжен пусковой обмоткой 44, включенной в выходную цепь ключевого транзисторного преобразователя 1 последовательно с резонансным контуром. Питание парафазного мультивибратора осуществляют от отдельного источника питания и от источника опорного напряжения (элементы 45, 46) путем подачи на него напряжения с выхода выпрямителя 12 ключевого транзисторного преобразователя напряжения 1 через емкостной фильтр 47. Резисторы 48, 49, 50, 51 задают необходимый рабочий режим транзисторов 4 и 5. Резонансный источник питания работает следующим образом. При включении источника питания ключевой транзисторный преобразователь 1 напряжения возбуждается за счет положительной обратной связи пусковой обмотки 44 дополнительного трансформатора 34 и начинает генерировать низкочастотные импульсы. На вторичной обмотке выходного трансформатора 11 появляется напряжение, которое через выпрямитель 12 запитывает микросхему на логических инверторах 28.31 парафазного мультивибратора. Мультивибратор начинает генерировать высокочастотные импульсы, которые поступают через трансформатор 34 на цепочке формирования базового тока транзисторов 4 и 5. Благодаря формированию базового тока транзисторов 4 и 5 преобразователя 1 с помощью блока 25 управления частотой и цепочек формирования базового тока (элементы 15.22) достигается уменьшение потерь в транзисторах 4 и 5 при их переключении. В момент t 1 (фиг. 2) происходит включение транзистора 4 (включение при нулевом напряжении). При таком резком скачке базового тока уменьшаются потери при включении транзистора. Транзистор включен и насыщен в течение времени t 1 t 2 . При этом базовый ток линейно уменьшается до значения i б мин. при котором транзистор еще насыщен. При значении i б время рассасывания t рас транзистора при его выключении будет минимальным, что приводит к уменьшению потерь при выключении транзистора. В течение времени t 2 t 3 , когда базовый ток принимает отрицательные значения, время выключения транзистора за счет дополнительного уменьшения t рас. уменьшается, благодаря чему снижаются тепловые потери при выключении транзистора. Таким образом, благодаря формированию базового тока транзисторов 4 и 5 специальной формы (фиг. 2) уменьшаются потери как при включении, так и при выключении транзисторов преобразователя 1. Когда транзистор 4 включается, ток в дросселе 8 начинает постепенно нарастать. Этот ток равен сумме тока в первичной обмотке трансформатора 11 и зарядного тока конденсатора 9. Когда напряжение на конденсаторе 9 и первичной обмотке трансформатора 11 сравняется с входным напряжением, падение напряжения на дросселе 8 станет равным нулю, после этого энергия, запасенная в дросселе 8, начинает заряжать конденсатор 9. Через интервал времени, который задается собственной резонансной частотой контура, ток в дросселе 8 и, следовательно, в транзисторе 4 станет равным нулю. Затем ток через дроссель 8 изменит направление и конденсатор 9 начинает разряжаться, поддерживая протекание тока через диод 23. При этом транзистор 4 выключается (переключение при нулевом токе). Резонансный полупериод зарядки конденсатора 10 начинается после выключения транзистора 4 и заканчивается перед включением транзистора 5. Когда оба транзистора выключены, энергия передается от дросселя 8 к конденсатору 10. По мере зарядки конденсатора 10 напряжение на транзисторе 4 увеличивается, а на транзисторе 5 уменьшается. Когда напряжение на транзисторе 5 спадает до нуля, происходит его включение без потерь, при этом диод 24 обеспечивает возврат энергии, оставшейся в дросселе 8, обратно на вход резонансного источника питания. Следующий полупериод идентичен первому и начинается, когда выключится транзистор 5. Теперь напряжение на транзисторе 5 будет возрастать, а напряжение на транзисторе 4 уменьшаться, и когда оно спадет до нуля, происходит включение транзистора 4 без потерь. Как и в других резонансных источниках питания, изменение рабочей частоты преобразователя 1 приводит к изменению выходного напряжения, причем рабочая частота преобразователя 1 выше его резонансной частоты, а рабочая точка преобразования расположена на правом склоне резонансной кривой контура (фиг. 3) на ее прямолинейном участке. Стабилизация выходного напряжения осуществляется за счет подачи напряжения отрицательной обратной связи с нагрузки 14 в блок 25 управления частотой и формирования в этом блоке импульсов управления транзисторами 4 и 5 преобразователя 17. В блоке 25 управления частотой осуществляется преобразование напряжения в сопротивление с помощью узла 26, а затем преобразование сопротивления в частоту с помощью узла 27. Модуляция частоты происходит за счет изменения сопротивления резистора 35, шунтируемого транзистором 41. Резистор 35 и конденсаторы 32, 33 и резисторы 36, 37 выполняют функцию времязадающих элементов парафазного мультивибратора. При уменьшении выходного напряжения от значения U 0 до U 2 за счет увеличения тока нагрузки частота парафазного мультивибратора уменьшается со значения f 1 до значения f 3 (фиг. 3), при этом выходное напряжение преобразователя 1 увеличивается до значения U 1 и компенсируется уменьшение выходного напряжения источника. Таким образом, выходное напряжение резонансного источника питания останется неизменным. Аналогично происходит стабилизация выходного напряжения за счет уменьшения тока нагрузки. На резонансной (регулировочной) характеристике (фиг. 3) рабочая точка преобразования смещается по линии f 1 , f 2 , f 3: чем больше ток в нагрузке, тем ближе рабочая точка к частоте и наоборот, чем меньше ток в нагрузке, тем ближе рабочая точка к частоте f 2 . При очень больших точка нагрузки или коротких замыканиях в нагрузке рабочая точка преобразования смещается влево за резонансную частоту f p , уменьшая напряжение практически до нуля (точка f 4 , фиг. 3). При этом защита от коротких замыканий источника питания осуществляется без применения каких-либо дополнительных элементов. Предложенная схема выполнения блока управления частотой, в частности, его узла преобразования сопротивления в частоту, является очень экономичной, т.к. отличается малым потреблением мощности. Таким образом данное изобретение позволяет повысить КПД резонансного источника питания.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Резонансный источник питания, содержащий ключевой транзисторный преобразователь напряжения, входом соединенный с входными выводами и выполненный в виде полумостовой схемы, в выходной цепи которой включен резонансный контур, состоящий из соединенных параллельно последовательной цепи на дросселе и первом конденсаторе и второго конденсатора, причем параллельно первому конденсатору включена первичная обмотка выходного трансформатора, вторичная обмотка которого через выпрямитель и фильтр соединена с выходом ключевого транзисторного преобразователя напряжения, подключенным к выходным выводам, и блок управления частотой, выходы которого подключены к управляющим входам ключевого транзисторного преобразователя напряжения, силовые выводы транзисторов которого шунтированы блокирующими диодами, отличающийся тем, что блок управления частотой выполнен в виде последовательно соединенных узла преобразования напряжения в сопротивление и узла преобразования сопротивления в частоту, в качестве транзисторов ключевого транзисторного преобразователя напряжения использованы биполярные транзисторы, базовые цепи которых снабжены цепочками формирования базового тока, выполненными в виде последовательно соединенных двух базовых резисторов и диода и на дополнительном конденсаторе, включенном между общей точкой базовых резисторов и свободным выводам диода, при этом управляющие входы транзисторов через соответствующие цепочки формирования базового тока соединены с соответствующими управляющими входами ключевого транзисторного преобразователя напряжения, а узел преобразования сопротивления в частоту выполнен в виде парафазного мультивибратора на четырех логических инверторах, третьем и четвертом конденсаторах, на дополнительном трансформаторе и трех резисторах, причем логические инверторы соединены попарно-последовательно, соответственно первый с вторым и третий с четвертым, третий конденсатор включен между выходом первого и входом третьего логических инверторов, а четвертый конденсатор включен между выходом третьего и входом первого логических инверторов, первый резистр включен параллельно выходу узла преобразования напряжения в сопротивление, через второй и третий резисторы соединенному с входами соответственно, первого и третьего логических инверторов, выходы второго и четвертого логических инверторов соединены с первичной обмоткой дополнительного трансформатора, две вторичные обмотки которого использованы в качестве выходов узла преобразования сопротивления в частоту и выходов блока управления частотой, входом, в качестве которого использован вход узла преобразования напряжения в сопротивление, подключенного к выходным выводам. 2. Источник питания по п.1, отличающийся тем, что узел преобразования напряжения в сопротивление выполнен на дополнительном транзисторе, выход которого использован в качестве выхода узла преобразования напряжения в сопротивление, переменном резисторе, использованном в качестве входа узла преобразования напряжения в сопротивление, и четвертом резисторе, включенном между входом и выходом узла преобразования напряжения в сопротивление, причем регулировочный вывод переменного резистора соединен с базой дополнительного транзистора. 3. Источник питания по пп.1 и 2 отличающийся тем, что логические инверторы выполнены на элементах 2И-НЕ. 4. Источник питания по пп.1 3, отличающийся тем, что дополнительный трансформатор снабжен пусковой обмоткой, включенной в выходную цепь ключевого транзисторного преобразователя напряжения последовательно с резонансным контуром.

В этой статье речь пойдет о LLC резонансном импульсном источнике питания (ИИП), для УМЗЧ на базе контроллера IRS27952 (он же IRS27951), так же будет подробно описан упрощенный метод расчета всех элементов для данного импульсного блока питания. Сразу хочется обратить внимание на то, что процесс расчета и изготовления резонансного ИИП весьма сложен и не каждый сможет с ним справиться, поэтому не рекомендуется браться за построение данного блока питания малоопытным радиолюбителям, правильно оценивайте свои силы. Само собой, для изготовления подобного источника питания, в наличии должен быть осциллограф и прибор, позволяющий измерять емкость и индуктивность (LC-метр). Описанный в статье метод расчета - упрощенный, он не учитывает всех нюансов и тонкостей, но его достаточно чтобы построить работоспособный резонансный импульсный источник питания. В статье не будет подробного описания принципа работы резонансных импульсных преобразователей, основной упор будет сделан на описание процесса расчета и изготовления резонансного ИИП.

В чем же преимущества резонансного ИИП в сравнении с "классическим импульсником"? Преимущества резонансного режима - это низкие потери и электромагнитные помехи (которые гораздо проще поддаются контролю и фильтрации), ниже потери восстановления выпрямительных диодов, меньше нагрузка на все элементы блока питания, что дает повышенную надежность и долговечность относительно "классических ИИП", возможность работы на гораздо более высоких частотах без ущерба эффективности, надежности и стоимости. И самый главное преимущество: резонансник - это модно:D

  • Выходная мощность (расчетная) = 250Вт
  • Выходная мощность (максимально испытанная) = 276Вт
  • Выходное напряжение (в диапазоне от 0Вт до 276Вт) = +/- 40В (+/-0.1В)
  • КПД (при выходной мощности 276Вт) = 92%

Осциллограммы формы тока через первичную обмотку резонансного трансформатора (при разных значениях выходной мощности):

Описываемый ИИП имеет в наличии софт-старт, защиту от короткого замыкания в нагрузке и стабилизацию выходного напряжения, которая точно поддерживает выходное напряжение преобразователя на одном уровне, во всем диапазоне выходных мощностей. При работе на выходной мощности до 200Вт, нет никакого ощутимого нагрева, ни одного из элементов блока питания. Силовые ключи на радиатор не устанавливались. При выходной мощности 276Вт, ключи становятся едва ощутимо теплыми, но уже ощутимо начинает разогреваться первична обмотка трансформатора. Защита от КЗ работает исправно. При замыкании выхода преобразователя, прекращается генерация, блок питания переходит в спящий режим и находится в нем до того момента пока короткое замыкание не будет устранено. После устранения короткого замыкания, по прошествии определенного времени, блок питания самостоятельно перезапускается и продолжает работу в нормальном режиме.

Схема резонансного импульсного источника питания на базе IRS27952:

Подробно описывать принцип работы схемы не буду, остановлюсь лишь на отдельных моментах. Первоначальный запуск преобразователя происходит через цепь из резисторов R16, R10, R7 и R6. Дальнейшее питания контроллера осуществляется от цепи самопитания (R14, C8, VD4, VD7). Стабилитрон VD2 поддерживает напряжение питания контроллера на одном уровне - 16В. Хочу обратить внимание, что IRS27952, в отличает от например IR2153 и IR2161, не имеет встроенного стабилитрона, поэтому применение внешнего стабилитрона строго обязательно, иначе контроллер гарантированно выйдет из строя. Конденсаторы C3 и C5 сглаживают пульсации и устраняют помехи в цепи питания IRS27952. Цепочки резисторов R1, R2, R3 и R5, R9, R15 - предназначены для разрядки конденсаторов после отключения сетевого питания преобразователя. Отдельное внимание следует уделить следующим элементам: Rfmin, Rfmax, Rfss, Ct, Css - это частото и время задающие элементы преобразователя, их номиналы необходимо рассчитывать под ваши конкретные задачи, об этом будет далее. Стабилитроны VD10 и VD13, так же подбираются под необходимое вам выходное напряжение: суммарное напряжение стабилизации двух стабилитронов должно быть равно расчетному значению выходного напряжения одного плеча, в данном случае для получения выходного напряжения +/-40В, применены два стабилитрона по 20В. Пожалуй это все что можно рассказать о схеме, принципиально она мало отличается от любой из схем импульсного преобразователя, выполненного на контроллерах от International Rectifier (теперь уже - Infineon). Самое время перейти к расчету.

Расчет резонансной цепи. Для расчета нам потребуется программа ResonantSMPS из состава пакета , авторства Старичка. Сразу скажу, что метод расчета описанный далее, является упрощенным и опытный глаз сможет найти в нем некоторые упущения, сделано это намерено, ради того чтобы максимально упростить расчет, чтобы максимальное числом неподготовленных радиолюбителей смогло повторить данный резонансный ИИП. И так, открываем программу и вводим исходные данные:

На первом этапе вводим все исходные данные как на скриншоте выше (дальше мы будем их корректировать). Все что вам нужно выбрать самостоятельно - это выходное напряжение. В окошке напротив "Номинальное напряжение, В", вводим необходимое вам напряжение. Например, если вам необходимо двухполярное выходное напряжения +/-40В, то вводим 80В (80В=40В+40В). Повторюсь: необходимо подобрать номиналы стабилитронов VD10 и VD13, таким образом, чтобы их суммарное напряжение стабилизации было примерно равно необходимому вам выходному напряжению ИИП (напряжению одного плеча). То есть, если вам необходимо выходное напряжение +/-40В, то необходимо использовать два стабилитрона по 20В, если необходимо например +/-35В, то стабилитрон VD10 на 30В и стабилитрон VD13 на 5,1В. Номинальный ток вычисляем из необходимой нам выходной мощности блока питания и напряжения. Допустим мы хотим получить ИИП с выходной мощностью 200Вт, значит нам необходимо желаемые 200Вт разделить на номинальное напряжение, в нашем случае 200Вт/80В и получится номинальный ток = 2,5А - это значение вписываем в соответствующее окошко программы. Прямое падение на диодах указываем 1В. Если вы знаете точное значение падения напряжения на диоде, то указывайте его, но в любом случае можно указывать прямое падение на диодах равно одному вольту, на точность расчета это почти никак не повлияет, на работоспособность тем более. Далее выбираем тип выпрямления - мостовое. И вводим желаемые диаметры проводов, которыми вы будете наматывать трансформатор. Диаметр провода не должен быть более 0,5мм, лучше использовать более тонкий провод и мотать в несколько жил. После этого выбираем подходящий сердечник:

Я использовал сердечник ETD29 и поэтому на плате посадочное место сделано под этот тип и размер сердечника, под любой другой сердечник придется корректировать печатную плату. А вам необходимо выбрать такой сердечник, чтобы он подходил по габаритной мощности и вся обмотка уместилась на его каркасе. После выбора сердечника, жмем кнопку "Рассчитать" и смотрим что у нас получилось:

Сразу нужно выставить минимально возможную величину немагнитного зазора, равную той, что предлагает программа (в моем случае 0,67мм) и снова нажать кнопку "рассчитать". После этого смотрим только на одну строку - это "емкость резонансного конденсатора". Чтобы упростить себе жизнь и не тратить свое время и силы на подбор нестандартной емкости из нескольких последовательно-параллельно соединенных конденсаторов, меняем значение резонансной частоты в соответствующем окошке программы, таким образом, чтобы емкость резонансного конденсатора получилась равна какому-либо стандартному значению емкости. В моем случае емкость резонансного конденсатора получилась 28нФ, ближайшее стандартное значение 33нФ, к этому значению и будем стремиться.

При манипуляциях с резонансной частотой, величину зазора всегда нужно устанавливать минимальной или очень близкой к минимальному значению что предлагает программа. Резонансную частоту я рекомендую выбирать в диапазоне 85 - 150кГц.. В моем случае резонансная частота, соответствующая "удобной" резонансной емкости, получилась 90кГц. Все самые главные цифры которые вам нужно запомнить, записать, заскринить, которые понадобятся в дальнейшем:

Значения в красных прямоугольниках понадобятся вам при намотке трансформатора. Хочу обратить внимание, что число витков вторичной обмотки соответствует введенному значению выходного напряжения - 80В. Если мы хотим получить блок питания с двухполярным выходным напряжением +/-40В, необходимо мотать не одну, а две вторичные обмотки, в данном случае две обмотки по 12-13 витков (полученные 25 витков делим на два). Для дальнейших расчетов нам нужно взглянуть на передаточную характеристику (для этого нужно на нажать на соответствующую кнопку в левом верхнем углу окна программы):

Запоминаем значения Fmin и Fmax. У нас они равны: Fmin=54кГц, Fmax=87кГц. Эти значения нам будут нужны для дальнейших расчетов.

Расчет номиналов обвязки IRS27952. В самом конце этой статьи нужно скачать файл NominaliObvyazki.xlsx . Для открытия его вам потребуется Microsoft Excel. Открываем файл и видим следующее:

Осталось только ввести наши Fmin и Fmax полученные выше и получить все номиналы обвязки IRS27952. Единственное, нам нужно выбрать емкость конденсаторы Ct, который задает величину мертвого времени. По хорошему, для этого потребовался бы достаточно сложный расчет, который необходимо выполнять исходя из параметров применяемых ключей, но поскольку у нас расчет упрощенный, я рекомендую просто использовать в качестве конденсаторы Ct, конденсатор с емкостью 390-470пФ. Этой емкости и соответствующего ему - мертвого времени, будет достаточно чтобы не перейти в режим жесткого переключения, при применении большинства популярных ключей, таких как как IRF740, STP10NK60, STF13NM60 и указанных в схеме 2SK3568. Оптимальная продолжительность софт-старта - 0,1 сек, можно установить большую продолжительность до 0,3 сек, больше не имеет смысла (при выходной емкости конденсаторов ИИП до 10000мкФ). Вводим наши Fmin и Fmax и получаем:

Все номиналы обвязки (кроме емкости конденсатора софт-старта), автоматически округляются до ближайших стандартных значений. Тут же можно видеть фактические значения минимальной, максимальной частот и частоты софт-старта, которые получатся с применяемыми стандартными номиналами обвязки. Емкость конденсатора софт-старта набирается из нескольких конденсаторов, керамических SMD и электролитического, для этого предусмотрено достаточно места на печатной плате. На этом расчет можно считать оконченным.

Реализация резонансной цепи. В резонансную цепь входят: резонансный трансформатор, резонансная емкость и дополнительный резонансный дроссель (если он необходим). Номинал резонансной емкости нам уже известен. Резонансный конденсатор должен быть пленочным, типа CBB21 или CBB81, допускается так же CL21 (но не рекомендуется). Напряжение конденсатор должно быть не менее 630В, лучше 1000В. Связано это с тем, что максимально допустимое напряжение на конденсаторе зависит от частоты тока через конденсатор, конденсатор на 400В проживет не долго. И теперь самое интересное - резонансный трансформатор. Для его намотки у нас есть все необходимые исходные данные. Как мотать? Вариантов есть несколько. Первый вариант: мотать как обычный трансформатор - мотаем первичку на всю ширину каркаса, после мотаем вторичку на всю ширину каркаса (или наоборот, сначала вторичку, потом первичку). Второй вариант: мотать вторичку на всю ширину каркаса, а первичку на половину или на треть ширины каркаса (или наоборот - первичку на всю ширину, а вторичку на половину или треть ширины каркаса). И третий вариант: использовать секционную намотку, когда первичная и вторичная обмотки полностью разделены. Для этого потребуется либо специальный секционированный каркас или такой каркас придется сделать самому, разделив каркас пластиковой перегородкой.

Зачем это и что это дает? Первый вариант - самый простой, но дает минимальную индуктивность рассеивания. Второй вариант - очень неудобный в намотке, дает среднюю по величине индуктивность рассеивания. Третий вариант - дает самую высокую и самую предсказуемую величину индуктивности рассеивания, кроме того наиболее удобный в намотке способ. Вы можете выбирать любой из вариантов. После того как вы определились с вариантом намотки и намотали нужное количество витков первичной и вторичной обмоток, необходимо изменить получившуюся индуктивность рассеивания первичной обмотки получившегося трансформатора. Для этого необходимо собрать трансформатор. На этом этапе склеивать части сердечника и вводить зазор не нужно (от величины зазора, наличия его или отсутствия, индуктивность рассеивания не зависит), достаточно временно стянуть сердечник изолентой. Необходимо, с помощью пайки, надежно замкнуть все выводы вторичной обмотки между собой и измерить индуктивность первичной обмотки. Полученное значение индуктивности и будет индуктивностью рассеивания первичной обмотки трансформатора. Допустим у вас получилась индуктивность рассеивания 50мкГн. Сравниваем получившееся значение с расчетным значением Lr, которое вы рассчитали выше:

Не сошлось! Надо 94мкГн, а у нас получилось 50мкГн. Что делать? Главное не паниковать! Такое бывает, обязательно будет у вас и это абсолютно нормально. Устранить это несоответствие нам поможет дополнительный резонансный дроссель. Но, если еще не забыли, чуть выше я писал про три варианта намотки трансформатора?! Так вот, первый способ дает самую низкую индуктивность рассеивания и используя его, вам гарантированно понадобится дополнительный дроссель. Второй вариант дает среднюю по величине индуктивность рассеивания и дроссель скорее всего вам все равно понадобится, но не с такой большой индуктивностью, как при использовании первого варианта. А вот в случае использования третьего варианта, возможно сразу получить необходимую индуктивность рассеивания первичной обмотки трансформатора, без использования дополнительно резонансного дросселя. Необходимая индуктивность рассеивания, при третьем варианте намотки, получается правильным выбором соотношения ширины намотки первичной и вторичной обмоток. Возможно даже что вам повезет и вы сможете угадать с шириной намотки первички и вторичек, и сходу получить нужную индуктивность рассеивания (как это получилось у меня). Но если вам не повезло и измеренная индуктивность рассеивания и необходимое расчетное значение не совпали, то необходимо использовать дополнительный резонансный дроссель. Индуктивность дросселя должна быть равна: расчетное значение Lr минус получившееся реальное значение индуктивности рассеивания первичной обмотки. В нашем случае: 94мкГн-50мкГн=44мкГн - именно такой должна быть индуктивность дополнительного резонансного дросселя, который на схеме и на плате показан как Lr. На чем мотать? Мотать правильнее всего на кольце из материала -2 или -14, выглядят такие кольца следующим образом:

Для намотки резонансного дросселя так же допускается использовать ферритовые кольца (зеленые или синие), но обязательно с зазором. Величина зазора выбирается произвольно. Для колец из материала -2 и -14 зазор не нужен. Мотать резонансный дроссель необходимо тем же проводов и тем же количеством жил что и первичную обмотку трансформатора. Количество витков должно быть таким, чтобы получить необходимое значение индуктивности, в нашем случае 44мкГн. И когда дроссель (если он оказался необходим) и резонансный трансформатор намотаны, необходимо подогнать индуктивность его первичной обмотки к расчетному значению. Выше мы уже вычислили какой должна быть полная индуктивность первичной обмотки трансформатора. В случае если реальная индуктивность рассеивания совпала с расчетным значением резонансной индуктивности и дополнительный резонансный дроссель оказался не нужен, то индуктивность первичной обмотки, подбором величины зазора в сердечнике трансформатора, подгоняется под расчетное значение:

То есть, необходимо, постепенно увеличивать зазор между частями сердечника трансформатора, пока измеренная индуктивность первичной обмотки трансформатора не станет равной нашему расчетному значению - 524мкГн. Но это только в случае, если не будет использоваться дополнительный резонансный дроссель. Если дополнительный дроссель будет присутствовать, то из расчетного значения полной индуктивности первичной обмотки, необходимо вычесть индуктивность этого дополнительного дросселя. В нашем случае получается 524мкГн-44мкГн=480мкГн, именно такой должна получится индуктивности первчиной обмотки нашего трансформатора. Индуктивность первичной обмотки измеряется с разомкнутыми вторичными обмотками. После достижения необходимого значения индуктивности первичной обмотки трансформатора, можно считать трансформатор и резонансный дроссель готовыми, а расчет оконченным.

Как убедиться что все получилось, что получившийся ИИП действительно резонансник? Необходимо с помощью осциллографа смотреть форму тока через первичную обмотку трансформатора. Для этого, в случае наличия дополнительного резонансного дросселя, на него наматывается временная пробная обмотка из 2-3 витков тонкого провода, нагружается на резистор сопротивлением 330-750Ом, а к этой обмотке подключается осциллограф. Форма тока должна быть синусоидальной или близкой к синусоидальной (примерно такой, как показано на моих осциллограммах выше). Если резонансного дросселя нет, то на его место, временно устанавливается токовый трансформатор. Он представляет из себя ферритовое кольцо с обмоткой содержащей 40-50 витков тонкого провода, нагруженная на резистор 330-750Ом, к которой подключается осциллограф и второй обмоткой из одного витка, которая включается на место резонансного дросселя.

Немного фотографий:




В завершении статьи хочу поблагодарить за предоставленные для опытов микросхемы IRS27952 и другие SMD элементы!

Спасибо за внимание!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
LLC Резонансный ИИП на базе IRS27952
R6 Резистор

0 Ом

1 SMD1206 В блокнот
R4, R11, R13 Резистор

4.7 Ом

3 SMD1206 В блокнот
R8, R12 Резистор

22 Ом

2 SMD1206 В блокнот
R17 Резистор

750 Ом

1 SMD1206 В блокнот
R18, R19 Резистор

24 кОм

2 SMD1206 В блокнот
R1, R2, R3, R5, R9, R15 Резистор

120 кОм

6 SMD1206 В блокнот
R7, R10, R16 Резистор

270 кОм

3 SMD1206 В блокнот
R14 Резистор

4.7 Ом

1 Выводной, 0.25Вт В блокнот
Rfmin Резистор * 1 SMD1206 В блокнот
Rfss Резистор * 1 SMD1206 В блокнот
Rfmax Резистор * 1 Выводной, 0.25Вт В блокнот
C2 Конденсатор пленочный 100 нФ 1 CL21, 400В В блокнот
C4, C7 Конденсатор пленочный помехоподавляющий 100 нФ 2 X2, 275В В блокнот
C8 Конденсатор керамический 1 нФ 1 630/1000В В блокнот
C6, C5 Конденсатор керамический 100 нФ 2 SMD1206, 50В В блокнот
C11, C12, C13, C14, C15, C16 Конденсатор керамический 1 мкФ 6 SMD1206, 50В В блокнот
C3 10 мкФ 1 25В В блокнот
C1 Конденсатор электролитический 220 мкФ 1 400В

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то