Заряд конденсатора стабильным током от сетевого напряжения. Ограничение зарядного тока конденсатора сетевого выпрямителя ИИП. Схема, описание. Схемы источников питания

Ограничение зарядного тока конденсатора сетевого выпрямителя ИИП

Одна из важных проблем в сетевых импульсных источниках питания - ограничение тока зарядки сглаживающего конденсатора большой емкости, установленного на выходе сетевого выпрямителя. Его максимальное значение, определяемое сопротивлением зарядной цепи, фиксировано для каждого конкретного устройства, но во всех случаях весьма значительно, что может привести не только к перегоранию предохранителей, но и к выходу из строя элементов входных цепей. Автор статьи предлагает простой способ решения указанной проблемы.

Решению задачи ограничения пускового тока посвящено немало работ, в которых описаны устройства так называемого "мягкого" включения . Один из широко применяемых способов - использование зарядной цепи с нелинейной характеристикой. Обычно конденсатор заряжают через токоограничивающий резистор до рабочего напряжения, а затем этот резистор замыкают электронным ключом. Наиболее простым получается подобное устройство при использовании тринистора .

На рисунке показана типовая схема входного узла импульсного источника питания. Назначение элементов, напрямую не относящихся к предлагаемому устройству (входной фильтр, сетевой выпрямитель), в статье не описано, поскольку эта часть выполнена стандартно .

Сглаживающий конденсатор С7 заряжается от сетевого выпрямителя VD1 через токоограничивающий резистор R2, параллельно которому включен тринистор VS1. Резистор должен отвечать двум требованиям: во-первых, его сопротивление должно быть достаточным для того, чтобы ток через предохранитель за время зарядки не привел к его перегоранию, и во-вторых, мощность рассеяния резистора должна быть такой, чтобы он не вышел из строя до полной зарядки конденсатора С7.

Первому условию удовлетворяет резистор сопротивлением 150 Ом. Максимальный ток зарядки при этом примерно равен 2 А. Экспериментально установлено, что два резистора сопротивлением 300 Ом и мощностью 2 Вт каждый, включенных параллельно, отвечают второму требованию.

Емкость конденсатора С7 660 мкФ выбрана из условия, что амплитуда пульсаций выпрямленного напряжения при максимальной мощности нагрузки 200 Вт не должна превышать 10 В. Номиналы элементов С6 и R3 рассчитывают следующим образом. Конденсатор С7 зарядится через резистор R2 практически полностью (95 % от максимального напряжения) за время t=3R2·C7=3·150·660·10-6 -0,3 с. В этот момент должен открыться тринистор VS1.

Тринистор включится, когда напряжение на его управляющем электроде достигнет 1 В, значит, конденсатор С6 должен за 0,3 с зарядиться до этого значения. Строго говоря, напряжение на конденсаторе растет нелинейно, но поскольку значение 1 В составляет около 0,3 % от максимально возможного (примерно 310 В), то этот начальный участок допустимо считать практически линейным, поэтому емкость конденсатора С6 рассчитывают по простой формуле: C=Q/U, где Q=l·t - заряд конденсатора; I - ток зарядки.

Определим ток зарядки. Он должен быть несколько больше тока управляющего электрода, при котором включается тринистор VS1. Выбираем тринистор КУ202Р1, аналогичный известному КУ202Н, но с меньшим током включения. Этот параметр в партии из 20 тринисторов находился в пределах от 1,5 до 11 мА, причем у подавляющего большинства его значение не превышало 5 мА. Для дальнейших экспериментов выбран прибор с током включения 3 мА. Выбираем сопротивление резистора R3 равным 45 кОм. Тогда ток зарядки конденсатора С6 равен 310 В/45 кОм = 6,9 мА, что в 2,3 раза больше тока включения тринистора.

Вычислим емкость конденсатора С6: С=6,9·10-3·0,3/1-2000 мкФ. В источнике питания использован меньший по габаритам конденсатор емкостью 1000 мкФ на напряжение 10 В. Время его зарядки уменьшилось вдвое, примерно до 0,15 с. Пришлось уменьшить постоянную времени цепи зарядки конденсатора С7 - сопротивление резистора R2 уменьшено до 65 Ом. При этом максимальный зарядный ток в момент включения равен 310 В/65 Ом = 4,8 А, но уже через время 0,15 с ток уменьшится приблизительно до 0,2 А.

Известно, что плавкий предохранитель обладает значительной инерционностью и может без повреждения пропускать короткие импульсы, намного превышающие его номинальный ток. В нашем случае среднее значение за время 0,15 с составляет 2,2 А и предохранитель переносит его "безболезненно". Два резистора сопротивлением 130 Ом и мощностью 2 Вт каждый, включенных параллельно, также справляются с такой нагрузкой. За время зарядки конденсатора С6 до напряжения 1 В (0,15 с) конденсатор С7 зарядится на 97 % от максимума.

Таким образом, все условия безопасной работы соблюдены. Длительная эксплуатация импульсного источника питания показала высокую надежность работы описанного узла. Следует отметить, что плавное в течение 0,15 с повышение напряжения на сглаживающем конденсаторе С7 благоприятно сказывается на работе как преобразователя напряжения, так и нагрузки.

Резистор R1 служит для быстрой разрядки конденсатора С6 при отключении блока питания от сети. Без него этот конденсатор разряжался бы значительно дольше. Если в этом случае быстро включить блок питания после его выключения, то тринистор VS1 может оказаться еще открытым и предохранитель сгорит.

Резистор R3 состоит из трех, включенных последовательно, сопротивлением 15 кОм и мощностью 1 Вт каждый. На них рассеивается мощность около 2 Вт. Резистор R2 - два параллельно включенных МЛТ-2 сопротивлением по 130 Ом, а конденсатор С7 - два, емкостью по 330 мкФ на номинальное напряжение 350 В, соединенных параллельно. Выключатель SA1 - тумблер Т2 или кнопочный переключатель ПкН41-1. Последний предпочтительнее, поскольку позволяет отключать от сети оба проводника. Тринистор КУ202Р1 снабжен алюминиевым теплоотводом размерами 15x15x1 мм.

Литература

  1. Источники вторичного электропитания. Справочное пособие. - М.: Радио и связь, 1983.
  2. . Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. - Л.: Энергоатомиздат, 1991.
  3. 3. Фролов А. Ограничение тока зарядки конденсатора в сетевом выпрямителе. - Радио, 2001, № 12, с. 38, 39, 42.
  4. 4. Мкртчян Ж. А. Электропитание электронно-вычислительных машин. - М.: Энергия, 1980.
  5. 5. Интегральные микросхемы зарубежной бытовой видеоаппаратуры. Справочное пособие. - С.-Пб,: Лань Виктория, 1996.

Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора с сопротивлением R, к источнику питания с постоянным напряжением U (рис. 16-4).

Так как в момент включения конденсатор еще не заряжен, то напряжение на нем Поэтому в цепи в начальный момент времени падение напряжения на сопротивлении R равно U и возникает ток, сила которого

Рис. 16-4. Зарядка конденсатора.

Прохождение тока i сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение и падение напряжения на сопротивлении R уменьшается:

как и следует из второго закона Кирхгофа. Следовательно, сила тока

уменьшается, уменьшается и скорость накопления заряда Q, так как ток в цепи

С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем растут все медленнее (рис. 16-5), а сила тока в цепи постепенно уменьшается пропорционально разности - напряжений

Рис. 16-5. График изменения тока и напряжения при зарядке конденсатора.

Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится равным нулю - процесс зарядки конденсатора заканчивается.

Процесс зарядки конденсатора тем продолжительней, чем больше сопротивление цепи R, ограничивающее силу тока, и чем больше емкость конденсатора С, так как при большой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуют постоянной времени цепи

чем больше , тем медленнее процесс.

Постоянная времени цепи имеет размерность времени, так как

Через интервал времени с момента включения цепи, равный , напряжение на конденсаторе достигает примерно 63% напряжения источника питания, а через интервал процесс зарядки конденсатора можно считать закончившимся.

Напряжение на конденсаторе при зарядке

т. е. оно равно разности постоянного напряжения источника питания и свободного напряжения убывающего с течением времени по закону показательной функции от значения U до нуля (рис. 16-5).

Зарядный ток конденсатора

Ток от начального значения постепенно уменьшается по закону показательной функции (рис. 16-5).

б) Разряд конденсатора

Рассмотрим теперь процесс разряда конденсатора С, который был заряжен от источника питания до напряжения U через резистор с сопротивлением R (рис. 16-6, Где переключатель переводится из положения 1 в положение 2).

Рис. 16-6. Разряд конденсатора на резистор.

Рис. 16-7. График изменения тока и напряжения при разрядке конденсатора.

В начальный момент, в цепи возникнет ток и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения будет уменьшаться и ток в цепи (рис. 16-7). Через интервал времени напряжение на конденсаторе и ток цепи уменьшатся при мерно до 1% начальных значений и процесс разряда конденсатора можно считать закончившимся.

Напряжение на конденсаторе при разряде

т. е. уменьшается по закону показательной функции (рис. 16-7).

Разрядный ток конденсатора

т. е. он, так же как и напряжение, уменьшается по тому же закону (рис. 6-7).

Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.

Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают некоторой проводимостью.

Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. Постоянная времени при саморазряде конденсатора не зависит от формы обкладок и расстояния между ними.

Процессы зарядки и разряда конденсатора называются переходными процессами.

Классный фейерверк у вас заложен. Стоит паре-тройке светодиодов пробиться, напряжение на LM317 скакнет до запредельного и будет классный бабах.

1000 микрофарад на 450v = 80 Джоулей. В случае проблем, конденсатор жухнет так, что мало не покажется. А проблемы будут, так как вы сунули конденсатор совсем без запаса в среду, где и 1kV можно в импульсе на вход поймать.

Совет - сделайте нормальный импульсный драйвер. А не этот кружок "умелые руки" без гальванической развязки и фильтров.

Даже если условно принять эту схему за верную, нужно наставить вокруг LM317 керамических конденсаторов, чтобы не звенела.

И да, токоограничение транзистором делается иначе - в вашей схеме он просто рванет потому как изначально к переходу Э-К будет приложена сеть.

А к переходу ЭБ ваш делитель приложит 236 вольт, что также приведет ко взрыву транзистора.

После нескольких уточнений наконец выяснилось, чего же вы хотите добиться: общий источник питания для нескольких цепей последовательно включённых светодиодов. Главной проблемой вы сочли узел плавного заряда фильтрового конденсатора. На мой взгляд, в такой схеме есть несколько куда более критичных мест. Но сначала по теме вопроса.

1000 мкф - это значение подходяще для тока нагрузки 0,5...3 ампера, а не десятки миллиампер (там достаточно 22...50 мкф). Транзистор можно ставить, если надо сделать плавное, на 4...20 секунд, нарастание яркости - но ведь у вас несколько гирлянд! Неужели они должны во всей квартире стартовать одновременно? Да и насчёт выключателей - вы хотите вместо штатных, коммутирующих цепь ~220 вольт, коммутировать цепь =310 вольт, ставя выключатель между конденсатором и гирляндой? Такое решение выглядит хоть как-то оправданным для "умного дома" (да и то не всё в нём понятно), но в обычной квартире так делать смысла нет. В ней правильнее установить для каждой гирлянды свой отдельный БП - и тогда куда выгоднее применять обычные супердешёвые (и куда более надёжные!) ленты с параллельными светодиодами на 12 вольт, а не с самодельными последовательными, в которых выгорание одного диода полностью лишает вас света.
Другое назначение узла плавного заряда - защита выпрямительных диодов от многократной перегрузки в момент включения, когда конденсатор полностью разряжен. Но эта задача полностью решается куда более простым методом - вместо T1 и R1, R3 надо вставить терморезистор сопротивлением в несколько десятков ом, снижающимся при прогреве до 0,5...3 ом, так сделано в сотнях миллионов компьютерных БП, надёжно работающих годами при примерно таком же токе нагрузки, как и у вас. Добыть такой термистор можно из любого дохлого компьютерного БП.

И наконец о том, чего в вашем вопросе нет, а оно бросается в глаза - о стабилизаторе тока на LM317, поглощающем излишек сетевого напряжения. Дело в том, что такой стаб работоспособен только в диапазоне от 3 до 40 вольт. Допуск на сетевое напряжение в городской исправной сети 10%, т.е. от 198 до 242 вольт. Значит, если вы рассчитали стаб на нижний предел (а так обычно и делается), то на верхнем пределе напряжение на стабе выйдет за допустимые 40 вольт. Если же вы настроите его на верх диапазона (т.е. на 242), то на нижнем пределе напряжение на стабе понизится ниже 3 вольт, и он перестанет стабилизировать ток. И я уж умолчу, что будет с этой схемой в сельской местности, где колебания сетевого напряжения куда шире. Так что такая схема будет нормально работать только при стабильном напряжении сети - но при стабильной сети стабилизатор не нужен, его прекрасно заменит простой резистор.

Транскрипт

1 1 Автор: Новиков П.А. Наш сайт: Плавный заряд емкости: что выбрать? Решению задачи ограничения зарядного тока посвящено немало работ, в которых описаны устройства так называемого «мягкого включения». В этом обилии схемных решений бывает трудно выбрать то, которое оптимально подходит для решения поставленной задачи. В данной статье рассмотрены базовые методы плавного заряда конденсатора и сделаны соответствующие выводы о целесообразности использования конкретного решения в конкретных ситуации. При разработке частотных преобразователей, драйверов управления электродвигателями, мощных выпрямителей и т.д. возникает проблема с ограничением зарядного тока сглаживающего конденсатора большой емкости, установленного на выходе сетевого выпрямителя или на шинах питания инвертора. Зачастую разработчиком этап заряда ёмкости фильтра недооценивается или попросту игнорируется. Причина такого отношения в устойчивости диодов и тиристоров к ударным токам, возникающим при заряде ёмкости. Частично, такой подход оправдан; даже диоды на несколько десятков Ампер совершенно безболезненно переносят токи возникающие, например, при заряде конденсатора 470 мкф непосредственно от сети 220 В. Но тем не менее, рано или поздно такой преобразователь выйдет из строя: большие токи заряда неизбежно приводят к деградации конденсаторов и к разрушению диодов. Таким образом, не использование специальных средств ограничения зарядного тока может привести к выходу из строя элементов входных цепей, что, в свою очередь, практически наверняка влечёт за собой выход из строя всех силовых цепей преобразователя. В сущности, все методы «мягкого включения» сводятся к нескольким основным вариантам, а именно: заряд с помощью зарядного резистора, заряд с помощью термистора, заряд с помощью транзисторов и заряд с помощью тиристоров. Все они имеют множество схемных вариаций и довольно широко используются на практике. Вопрос в том: что выбрать? Попробуем разобраться. Заряд с помощью зарядного резистора. Структурная схема такого способа изображена на рисунке 1. Рисунок 1 Структурная схема заряда с помощью зарядного резистора

2 2 При включении контакт реле К1.1 разомкнут и зарядный ток ограничивается резистором R1. По истечении определенного времени и/или по достижению напряжения на конденсаторе определённого порога замыкается контакт реле K1.1 шунтируя резистор R1. Существуют и более сложные вариации данной схемы: используется резистивная матрица и поочерёдно подключаются резисторы, таким образом можно зарядить большую ёмкость за относительно малое время с сохранением приемлемого среднего тока заряда. Однако, данный способ не нашёл широкого применения, т.к. его минусами является относительная сложность и большие габариты, а таких задач, где требуется быстрый заряд конденсатора большой ёмкости не так много. Заряд с помощью зарядного резистора, пожалуй, наиболее распространённый способ «мягкого включения». Популярность этого метода объясняется простотой и дешевизной реализации, очень высокой надёжностью (при правильно подобранной мощности резистора даже при КЗ в нагрузке схема из строя не выйдет), применимостью как в цепях переменного, так и в цепях постоянного тока. Но имеются у данного метода и свои минусы. Основные из них следующие: 1. Даже при не включенном реле нагрузка находится под напряжением (через резистор). Чтобы обесточить нагрузку необходимо ставить дополнительное реле либо в силовой цепи, либо в цепи резистора, что, в свою очередь, значительно усложняет схему. 2. Резистор подбирается один раз под конкретную активную и емкостную нагрузку, если нагрузка изменяется, то при отсутствии соответствующих защит схема может выйти из строя. Например, не была отключена нагрузка, напряжение на нагрузке через 1 с достигло не 300 В, а 5 В, включилось реле, далее большой ток заряд и выход из строя. 3. Если реле включается по пороговому напряжению на конденсаторе, то данная схема неустойчива к провалам напряжения на нагрузке, возникающих, например, при запуске двигателя от маломощной сети: напряжение просядет, реле отключится и питание нагрузки будет осуществляться через зарядный резистор, от чего он, вероятнее всего, сгорит. Разумеется, все эти недостатки не так сложно обойти, установив дополнительное реле, схемы перезапуска, схемы контроля напряжений на входе и выходе резистора и т.д. Но тогда такой метод лишается основных преимуществ простоты и дешевизны. Таким образом, данный способ плавного заряда целесообразно использовать в схемах со стабильной нагрузкой и стабильным напряжением питания, в ремонтопригодных устройствах, допускающих сбои (точило в гараже). В том случае, если используется сложная схема управления, зарядный резистор имеет смысл использовать при заряде очень больших емкостей в десятки и сотни тысяч мкф, когда даже тиристоры могут выйти из строя, например, при недопустимо больших значениях di/dt. Если же требуется работа устройства заряда в различных режимах нагрузки и питания, то данный метод использовать нецелесообразно; конечная схема будет сложнее, чем схема управления тем же зарядным транзистором.

3 3 Заряд с помощью зарядного термистора. Структурная схема заряда с помощью термистора изображена на рисунке 2. Рисунок 2 Структурная схема заряда с помощью термистора При включении термистор RK1 обладает большим сопротивлением, ограничивая зарядный ток конденсатора С1. По мере разогрева сопротивление термистора уменьшается, в результате этого на нем уменьшается падение напряжения и уменьшается выделяемая мощность. В итоге, выход выпрямителя и нагрузка соединяются почти накоротко. Данный способ очень прост, надёжен, не требует никаких дополнительных схем, однако в мощных преобразователях он не нашёл широкого применения по следующим причинам: 1. Как и в предыдущем случае, без дополнительного реле нагрузка будет находиться под напряжением. 2. Схема крайне плохо «переваривает» смену нагрузки. Например, на холостом ходу двигатель потребляет 1 А, а под нагрузкой 10 А. Если термистор выбран на минимальное сопротивление при 10 А, то на 1 А длительного тока его сопротивление будет недопустимо высоко, а если на 1 А, то на 10 А он может сгореть. 3. Остаточное сопротивление термистора даже после разогрева оказывается недопустимо высоким при работе на большую нагрузку, что во-первых, приводит к существенным тепловым потерям на самом термисторе, а во-вторых, ограничивает ток нагрузки, что может оказаться неприемлемым, например, если требуется запуск двигателя при сохранении номинального пускового момента. Метод заряда с помощью термистора оптимален для преобразователей мощностью не более сотен Ватт; для более «серьёзных» преобразователей потери на термисторе оказываются слишком большими и, плюс к этому, недопустимо снижается надёжность устройства в целом. Указанные методы, если не применять дополнительных схем, являются пассивными способами плавного заряда конденсаторов; далее речь о пойдёт о заряде с помощью активных элементов: транзисторов и тиристоров.

4 4 Заряд с помощью транзисторов. Структурная схема этого способа изображена на рисунке 3. Рисунок 3 Структурная схема заряда с помощью зарядного транзистора В зависимости от управления, для этой схемы существуют два основных режима: статический и динамический. Статический режим подразумевает работу транзистора на активном участке его ВАХ, таким образом, что сопротивление его канала оказывается достаточно большим, чтобы ограничить ток заряда. Фактически, в таком режиме транзистор используется как переменный резистор. Такое управление используется не часто в виду больших тепловых потерь на кристалле транзистора в процессе заряда, изменении параметров транзистора, в частности, при изменении температуры и, в конечном итоге, из-за низкой надёжности такого способа в целом. Другой режим динамический: накачка ёмкости кратковременными импульсами. Такой способ плавного заряда гораздо более популярен и используется, например, в МККНМ () и о нём уже шла речь в статье «Контроль напряжения ПЧ: проблемы и решения», а потому здесь отметим только основные достоинства и недостатки. заряда; Достоинства заряда ёмкости указанным способом следующие: 1. Возможность работы от постоянного напряжения питания; 2. Некритичность к напряжению питания и к емкостному сопротивлению нагрузки; 3. Возможность реализации защиты нагрузки от КЗ в том числе и кратковременного; 4. Малые габариты в сравнении с резистивным (а тем более резистивно-транзисторном) способе 5. При закрытом транзисторе нагрузка не находится под напряжением. Но есть у этой схемы и недостатки: 1. Относительно меньшая устойчивость к броскам тока в сравнении с тиристорами и тем более резисторами; 2. Длительный заряд больших емкостей (в течении секунд и даже десятков секунд), что обусловлено ОБР транзистора: т.к. скважность сигнала велика, эквивалентное сопротивление цепи заряда тоже велико, если же скважность уменьшить, то вероятность перегрева транзистора (и его выход из строя) может оказаться неприемлемо высока. Таким образом, применять такую схему для емкостей более нескольких тысяч мкф нецелесообразно. 3. Сложность схемы управления, необходимость гальванической развязки цепей управления от цепей затвор-эмиттер транзистора. Тем не менее, данный способ подкупает своею универсальностью, надёжностью работы в связке с транзисторным инвертором и способностью работать как на переменном, так и постоянном питающем напряжении. Фактически, данный способ является оптимальным для создания надёжных систем с непостоянными параметрами питания и нагрузки для мощностей от квт до нескольких десятков квт, если, конечно, габариты схемы управления позволяют создать адекватный алгоритм работы такого рода накачки ёмкости.

5 5 Заряд с помощью тиристоров. Пожалуй, наиболее распространённый способ заряда в сетях переменного тока. Пример схемной реализации такого способа приведён на рисунке 4. Рисунок 4 Схема заряда ёмкости с помощью тиристоров Данная схема применена в устройстве плавного заряда ёмкости фильтра приборов типа М31 (). Её принцип работы основан на ступенчатом отпирании тиристоров управляемого моста VS1,VS2, начиная с минимального угла и заканчивая полным открытием. Заряд конденсатора происходит за 15 полуволн, т.е. за 150 ms. Этого времени вполне достаточно для ограничения зарядного тока конденсатора большой емкости. Диаграмма, поясняющая работу схемы заряда конденсатора, приведена на рисунке 5. Рисунок 5 Диаграмма заряда конденсатора Пульсирующее напряжение с частотой 100 Гц снимается с диодного моста VD1, уменьшается делителем R1, R2 до необходимого значения, по которому микроконтроллер определяет переход через 0 и по заложенной характеристике открывает оптопару DA1, которая в свою очередь открывает тиристоры VS1 и VS2. Открывается тот тиристор, на аноде которого относительно катода находится положительная полуволна. После 15 полуволн тиристоры остаются постоянно открытыми. Тиристоры и диоды выбираются в зависимости от входного напряжения и тока нагрузки. На рисунке 6 изображен график изменения напряжения на конденсаторе С1 при его заряде.

6 6 Рисунок 6 График изменения напряжения на конденсаторе нагрузки Схему заряда емкости можно доработать, заведя на дополнительный вход АЦП микроконтроллера сигнал с токового датчика. При превышении допустимого тока совместно с основной защитой силовых ключей (частотные преобразователи, модули управления двигателями и т.д.) закроются тиристоры управляемого моста. Так же можно привнести управление третьим тиристором (для трёхфазной сети), индикацию заряда и т.д. Но тем не менее общий принцип заряда остаётся тем же. Преимущества следующие: 1. Относительная простота реализации (в сравнении со схемой управления для транзистора), не требуется гальванической развязки, преобразователя питания и т.д. 2. Относительно меньшая критичность к изменению напряжения питания (минимальный порог обусловлен делителем на резисторах R1, R2); 3. Устойчивость к изменению нагрузки, к импульсным токам большой амплитуды; 4. Малые габариты, т.к. не требуется дополнительных устройств, помимо собственно выпрямительного моста. Недостатки: 1. Возможность работы только от сети переменного напряжения; 2. Невозможность реализации быстрой защиты нагрузки от КЗ: например, для выхода из строя транзистора инвертора достаточно нескольких десятков мкс, в то время как тиристоры не закроются ранее, чем закончатся соответствующие полуволны, а это десятки мс. В целом же, плавный заряд ёмкости на тиристорах в цепях переменного тока обладает явными преимуществами по части габаритов в сравнении с резистором, простотой в сравнении с транзистором и возможностью работы практически при любых мощностях. Применение же микроконтроллера в такой схеме ещё больше упрощает реализацию схемы управления.

7 7 Выводы. В итоге, можно составить таблицу (таблица 1) выбора способа заряда ёмкости фильтра. Выше было рассмотрена четыре основных способа, в таблице же их пять; добавлен комбинированный способ заряда с помощью резистора и схемы управления (с контролем напряжений, токов, перезапуском). В этом случае под собственно резистивным зарядом подразумевается такая схема, где резистор шунтируется оптореле (и т.п.) либо по достижению напряжением на конденсаторе определённого порога (например, соответствующего току засветки светодиода оптореле), либо по истечению определённого времени (RCцепочка установленная по включению оптореле со входа напряжения питания). Таблица 1 Выбор способов заряда ёмкости нагрузки Резистор Резистор + управление Термистор Транзистор Тиристор Работоспособность на постоянном напряжении источника Работоспособность при изменении напряжения питания и/или нагрузки Работоспособность на больших мощностях Отсутствие питания нагрузки в выключен-ном режиме Простота схемы управления Таким образом, зная требования к системе и исходя из предложенной таблицы можно определиться с выбором оптимальной схемы «мягкого включения». Например, если требуется зарядить конденсатор для сети 220 В (+10%) на мощность нагрузки 200 Вт, то оптимальным выбором будет термистор; если сеть та же, но мощность 5 квт, то оптимальной будет тиристорная схема; если условия те же, но напряжение подаётся уже выпрямленное, то резистор; если напряжения постоянное, но значительно меняется нагрузка, то транзистор и т.д. Впрочем, выбор той или иной схемы это во многом вопрос предпочтений разработчика; кому-то нравится одно, кому-то другое. Тем не менее, надеемся, данная статья сможет помочь разработчику в таком нелёгком деле, как разработка и в ещё более нелёгком деле - выборе.


Список информационных источников: 1.Ультразвуковые решетки для количественного неразрушающего контроля. инженерный подход. // Болотина И.О., Дьякина М.Е., Жантлесов Е., Крёнинг М., Мор Ф., Редди К., Солдатов

1 Автор: Новиков П.А. Наш сайт: www.electrum-av.com Приёмка «5» для электропривода Управление электродвигателем с помощью преобразователя частоты (ПЧ) на основе IGBTили MOSFET-транзисторов это, для сегодняшнего

ИЛТ, ИЛТ модули управления тиристорами Схемы преобразователей на тиристорах требуют управления мощным сигналом, изолированным от схемы управления. Модули ИЛТ и ИЛТ с выходом на высоковольтном транзисторе

ОБОГРЕВ Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 Б, мощность потребления 1 квт. Применение других элементов позволяет использовать устройство

Основы функционирования преобразовательной электронной техники Выпрямители и инверторы ВЫПРЯМИТЕЛИ НА ДИОДАХ Показатели выпрямленного напряжения во многом определяются как схемой выпрямления, так и используемыми

ИЛТ Драйвер управления тиристором Схемы преобразователей на тиристорах требуют изолированного управления. Логические изоляторы потенциала типа ИЛТ совместно с диодным распределителем допускают простое

Инвертор реактивной мощности Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1-5 квт. Устройство может использоваться с любыми

Петрунин В.В., Анохина Ю.В. ГБПОУ ПО «Кузнецкий колледж электронной техники», Кузнецк Пензенская область, Россия ИНВЕРТОР МОЩНЫХ ВЫСОКОСКОРОСТНЫХ ДВИГАТЕЛЕЙ Разработано устройство, связывающее персональный

БЛОКИ ПИТАНИЯ ИПС-1000-220/110В-10А ИПС-1500-220/110В-15А ИПС-1000-220/220В-5А ИПС-1500-220/220В-7А DC(АС) / DC-1000-220/110В-10А (ИПС-1000-220/110В-10А(DC/AC)/DC) DC(АС) / DC-1500-220/110В-15А (ИПС-1500-220/110В-15А(DC/AC)/DC)

Базовые узлы ИВЭП ИВЭП представляют собой сочетание различных функциональных узлов электроники, выполняющих различные виды преобразования электрической энергии, а именно: выпрямление; фильтрацию; трансформацию

ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ? Применение преобразователей энергии в электроприводе обусловлено в основном необходимостью регулирования скорости вращения электродвигателей. У большинства первичных

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/24В-25А ИПС-1200-220/24В-35А ИПС-1500-220/24В-50А ИПС-950-220/48В-12А ИПС-1200-220/48В-25А ИПС-1500-220/48В-30А ИПС-950-220/60В-12А ИПС-1200-220/60В-25А

ЛАБОРАТОРНАЯ РАБОТА 3 ИССЛЕДОВАНИЕ ВЫПРЯМИТЕЛЬНОГО УСТРОЙСТВА Цель работы: ознакомиться со схемами выпрямителей и сглаживающих фильтров. Исследовать работу выпрямительного устройства с переменной нагрузкой.

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-300-220/24В-10А ИПС-300-220/48В-5А ИПС-300-220/60В-5А DC/DC-220/24B-10A (ИПС-300-220/24В-10А (DC/AC)/DC)) DC/DC-220/48B-5A (ИПС-300-220/48В-5А (DC/AC)/DC)) DC/DC-220/60B-5A

ЛЕКЦИЯ 15 ТИРИСТОРЫ План занятия: 1. Классификация и условные графические обозначения тиристоров 2. Принцип работы тиристоров 3. Управляемые тиристоры 4. Симисторы 5. Основные параметры тиристоров 6. Области

109 Лекция ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ План 1. Анализ цепей с диодами.. Источники вторичного электропитания. 3. Выпрямители. 4. Сглаживающие фильтры. 5. Стабилизаторы напряжения. 6. Выводы. 1. Анализ

БЛОКИ ПИТАНИЯ БПС-3000-380/24В-100А-14 БПС-3000-380/48В-60А-14 БПС-3000-380/60В-50А-14 БПС-3000-380/110В-25А-14 БПС-3000-380/220В-15А-14 руководство по эксплуатации СОДЕРЖАНИЕ 1. Назначение... 3 2. Технические

75 Лекция 8 ВЫПРЯМИТЕЛИ (ПРОДОЛЖЕНИЕ) План 1. Введение 2. Однополупериодный управляемый выпрямитель 3. Двухполупериодные управляемые выпрямители 4. Сглаживающие фильтры 5. Потери и КПД выпрямителей 6.

УДК 621.316 А.Г. СОСКОВ, д-р техн. наук, Н.О. РАК, аспирант ГИБРИДНЫЙ КОНТАКТОР ПОСТОЯННОГО ТОКА С УЛУЧШЕННЫМИ ТЕХНИКО-ЭКОНОМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ Запропоновані нові принципи побудови гібридних контакторів

Что такое выпрямитель Для чего нужны выпрямители Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители

Микросхемы КР1182ПМ1 фазовый регулятор мощности Микросхемы КР1182ПМ1 еще одно решение задачи регулирования мощности высоковольтных мощных нагрузок. Микросхемы можно применять для плавного включения и выключения

105 Лекция 11 ИМПУЛЬСНЫЕ ПРЕОБРАЗОВАТЕЛИ С ГАЛЬВАНИЧЕСКИМ РАЗДЕЛЕНИЕМ ВХОДА И ВЫХОДА План 1. Введение. Прямоходовые преобразователи 3. Обратноходовой преобразователь 4. Синхронное выпрямление 5. Корректоры

Изобретение относится к электротехнике и предназначено для реализации мощных, дешевых и эффективных регулируемых транзисторных высокочастотных резонансных преобразователей напряжения различного применения,

ГЕНЕРАТОР Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых

95 Лекция 0 ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ План. Введение. Понижающие импульсные регуляторы 3. Повышающие импульсные регуляторы 4. Инвертирующий импульсный регулятор 5. Потери и КПД импульсных регуляторов

5 Лекция 2 ИНВЕРТОРЫ План. Введение 2. Двухтактный инвертор 3. Мостовой инвертор 4. Способы формирования напряжения синусоидальной формы 5. Трехфазные инверторы 6. Выводы. Введение Инверторы устройства,

Новые драйверы IGBT и MOSFET транзисторов от «Электрум АВ» - аналоги драйверов «Mitsubishi» Драйверы транзисторов с полевым управлением М57962L и VLA500-01 производства «Mitsubishi» традиционно пользуются

Быстрый компаратор сетевого напряжения на микросхеме КМОП. Володин В. Я. Важной частью бесперебойного источника питания, быстродействующего дискретного корректора (стабилизатора) сетевого напряжения или

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/110В-10А-2U ИПС-1500-220/110В-15А-2U ИПС-2000-220/110В-20А-2U ИПС-1000-220/220В-5А-2U ИПС-1500-220/220В-7А-2U ИПС-2000-220/220В-10А-2U DC(АС) / DC-1000-220/110В-10А-2U

РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (1) МПК H0B 33/08 (06.01) H0B 37/00 (06.01) F21K 2/00 (06.01) 171 272 (13) U1 R U 1 7 1 2 7 2 U 1 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/24В-25А-2U (DC(АС) / DC-1000-220/24В-25А-2U) ИПС-1200-220/24В-35А-2U (DC(АС) / DC-1200-220/24В-35А-2U) ИПС-1500-220/24В-50А-2U (DC(АС) / DC -1500-220/24В-50А-2U)

Конструктивное решение разработки твердотельного реле постоянного тока Вишняков А., Бурмель А., группа 31-КЭ, ФГБОУ ВПО «Госуниверситет- УНПК» Твердотельные реле используются в промышленных системах управления

Тема 16. Выпрямители 1. Назначение и устройство выпрямителей Выпрямители это устройства, служащие для преобразования переменного тока в постоянный. На рис. 1 представлена структурная схема выпрямителя,

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/24В-25А-2U ИПС-1200-220/24В-35А-2U ИПС-1500-220/24В-50А-2U ИПС-2000-220/24В-70А-2U ИПС-950-220/48В-12А-2U ИПС-1200-220/48В-25А-2U ИПС-1500-220/48В-30А-2U

Лекция 3 «Выпрямители переменного напряжения». Для преобразования переменного сетевого напряжения в постоянное используются схемы, называемые «выпрямителями». Для реализации функции выпрямления в подобных

КОНВЕРТОР DC/DC-24/12В-20А DC/DC-24/48В-10А DC/DC-24/60В-10А Техническое описание СОДЕРЖАНИЕ 1. Назначение... 3 2. Технические характеристики... 3 3.Принцип работы... 4 4. Меры безопасности... 6 5. Подключение

ВНИМАНИЕ! В связи с изменением схемы выпрямителя настоящим эксплуатационным документом следует пользоваться с учетом следующих изменений 1. Принципиальная электрическая схема выпрямителя, схема электрическая

15.4. СГЛАЖИВАЮЩИЕ ФИЛЬТРЫ Сглаживающие фильтры предназначены для уменьшения пульсаций выпрямленного напряжения. Их основным параметром является коэффициент сглаживания равный отношению коэффициента пульсаций

1 Лекции профессора Полевского В.И. Тиристоры Общие понятия Тиристор это кремневый управляемый вентиль (диод) с двумя устойчивыми состояниями проводимости (высокой и низкой). Основным элементом тиристоров

1 НАГРУЗКА ПОСТОЯННОГО ТОКА. Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто

СВАРОЧНЫЕ ВЫПРЯМИТЕЛИ 1. Устройство и классификация сварочных выпрямителей 2. Схемы выпрямления 3. Выпрямители сварочные параметрические 3.4. Выпрямители сварочные с фазовым управлением 3.5. Инверторные

1 Автор: Гриднев Н.Н. Наш сайт: www.electrum-av.com Стенд управляемой нагрузки При разработке и изготовлении устройств управления трехфазными асинхронными электродвигателями возникает необходимость в проверке

Соловьев И.Н., Гранков И.Е. ИНВАРИАНТНЫЙ К НАГРУЗКЕ ИНВЕРТОР Актуальной, сегодня, является задача обеспечения работы инвертора с нагрузками различных типов. Работа инвертора с линейными нагрузками достаточно

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2006. 1(43). 147 152 УДК 62-50:519.216 ПОСТРОЕНИЕ ДЕМПФИРУЮЩИХ ЦЕПЕЙ ДЛЯ МОЩНЫХ ИМПУЛЬСНЫХ ПРЕОБРАЗОВАТЕЛЕЙ Е.А. МОИСЕЕВ Приводятся практические рекомендации по выбору элементов

Лекция 7 ВЫПРЯМИТЕЛИ План 1. Источники вторичного электропитания 2. Однополупериодный выпрямитель 3. Двухполупериодные выпрямители 4. Трехфазные выпрямители 67 1. Источники вторичного электропитания Источники

Параметры элементов схемы. f=50 Гц (частота сети) Вариант Максимальное напряжение С 1, мкф С 2, мкф Cхема трансформатора U м, кв 1 3 3 Рис.1 2 15 0,1 0,1 Рис.2а 3 10 0,025 0,025 Рис.2б 4 35 0,9 0,9 Рис.3

Общие сведения АНАЛИЗ СХЕМ ВЫПРЯМЛЕНИЯ ПЕРЕМЕННОГО ТОКА ВЫСОКОГО НАПРЯЖЕНИЯ Во многих областях науки и техники требуются источники энергии постоянного тока. Потребителям энергии постоянного тока являются

ЗАО «Протон-Импульс» Основные направления новых и перспективных разработок ЗАО «Протон-Импульс» ЗАО «Протон-Импульс» Типы серийно выпускаемых твердотельных реле Реле переменного тока: с контролем перехода

Список информационных источников 1.Круглосуточное удлинение конечностей в автоматическом режиме/ В.И. Шевцов, А.В. Попков// Электронный журнал «Регенеративная хирургия». 2003. - 1. МНОГОФАЗНАЯ СХЕМА РЕГУЛИРОВАНИЯ

2.5 Блок широтно-импульсного регулятора VC63 Блок предназначен для регулирования амплитудного значения напряжения, прикладываемого к первичной обмотке высоковольтного трансформатора. Его конструкция со

НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР СХЕМОТЕХНИКИ И ИНТЕГРАЛЬНЫХ ТЕХНОЛОГИЙ. РОССИЯ, БРЯНСК СЕТЕВОЙ ИМПУЛЬСНЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ I. ПРИМЕНЕНИЕ ИС ОБЩЕЕ ОПИСАНИЕ Микросхема является представителем класса высоковольтных

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Лабораторная работа 1 Источники вторичного питания Целью работы является исследование основных параметров источника вторичного питания электронной аппаратуры на базе однофазного двухполупериодного выпрямителя.

Тема: Сглаживающие фильтры План 1. Пассивные сглаживающие фильтры 2. Активный сглаживающий фильтр Пассивные сглаживающие фильтры Активно-индуктивный (R-L) сглаживающий фильтр Он представляет собой катушку

RU103252 (21), (22) Заявка: 2010149149/07, 02.12.2010 (24) Дата начала отсчета срока действия патента: 02.12.2010 Приоритет(ы): (22) Дата подачи заявки: 02.12.2010 (45) Опубликовано: 27.03.2011Адрес для

ЛЕКЦИЯ 13 БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Динамический и ключевой режимы работы биполярного транзистора План занятия: 1. Динамический режим работы транзистора 2. Ключевой режим работы транзистор 3. Динамические

Дискретные входы В традиционных системах сигнализации источники информации (см. контакты В1, В2, Вn на рис. 1) связаны непосредственно с сигнальными элементами звуковым сигналом H1, лампами H2, H3,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Отчет по лабораторной работе 1 Тема: ИССЛЕДОВАНИЕ СХЕМ НА ДИОДАХ Вы полнил: студент группы СП 08а Кириченко Е. С.

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-300-220/110В-4А-1U-D ИПС-300-220/110В-4А-1U-Е ИПС 300-220/110В-4А-1U-DC(AC)/DC ИПС 300-220/110В-4А-1U-DC(AC)/DC-Е ИПС-300-220/220В-2А-1U-D ИПС-300-220/220В-2А-1U-Е

ТЕСТЫ ПО ДИСЦИПЛИНЕ Электротехника и основы электроники 1. Если отказ любого из элементов системы приводит к отказу всей системы, то элементы соединены: 1) последовательно; 2) параллельно; 3) последовательно

ТЕСТЫ ПО ДИСЦИПЛИНЕ Электротехника и основы электроники Содержание и структура тестовых материалов 1. Основы электроники 1.1. Аналоговая электроника 1.2. Преобразовательная техника 1.3. Импульсные устройства

Конденсатор (capacitor, cap) - это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается обратно, когда напряжения недостаточно для удержания заряда.

Основной характеристикой конденсатора является ёмкость. Она обозначается символом C , единица её измерения - Фарад. Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении. Также чем больше ёмкость, тем меньше скорость зарядки и разрядки.

Типичные значения, применяемые в микроэлектронике: от десятков пикофарад (pF, пФ = 0.000000000001 Ф) до десятков микрофарад (μF, мкФ = 0.000001). Самые распростронённые типы конденсаторов: керамический и электролитический. Керамические меньше по размеру и обычно имеют ёмкость до 1 мкФ; им всё равно какой из контактов будет подключен к плюсу, а какой - к минусу. Электролитические конденсаторы имеют ёмкости от 100 пФ и они полярны: к плюсу должен быть подключен конкретный контакт. Ножка, соответствующая плюсу, делается длинее.

Конденсатор представляет собой две пластины, разделённые слоем диэлектрика. Пластины скапливают заряд: одна положительный, другая отрицательный; тем самым внутри создаётся напряжение . Изолирующий диэлектрик не даёт внутреннему напряжению превратиться во внутренний ток , который бы уравнял пластины.

Зарядка и разрядка

Рассмотрим такую схему:

Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение - он заряжается. Заряд Q на пластине в определённый момент времени расчитывается по формуле:

C - ёмкость, e - экспонента (константа ≈ 2.71828), t - время с момента начала зарядки. Заряд на второй пластине по значению всегда точно такой же, но с противоположным знаком. Если резистор R убрать, останется лишь небольшое сопротивление проводов (оно и станет значением R ) и зарядка будет происходить очень быстро.

Изобразив функцию на графике, получим такую картину:

Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение V c , которое «сопротивляется» V in .

Заканчивается всё тем, что V c становится равным по значению V in и ток перестаёт течь вовсе. В этот момент говорят, что конденсатор достиг точки насыщения (equilibrium). Заряд при этом достигает максимума.

Вспомнив Закон Ома , мы можем изобразить зависимость силы тока в нашей цепи при зарядке конденсатора.

Теперь, когда система находится в равновесии, поставим переключатель в положение 2.

На пластинах конденсатора заряды противоположных знаков, они создают напряжение - появляется ток через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро, затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q 0 обозначить заряд, который был на конденсаторе изначально, то:

Эти величины на графике выглядят следующим образом:

Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение исчезнет, течение тока прекратится.

Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение резко меняется. Это его свойство и определяет когда и как он применяется на практике.

Применение на практике

Среди наиболее распространённых в микроэлектронике можно выделить такие шаблоны:

    Резервный конденсатор (bypass cap) - для уменьшения ряби напряжения питания

    Фильтрующий конденсатор (filter cap) - для разделения постоянной и изменяющейся составляющих напряжения, для выделения сигнала

Резервный конденсатор

Многие схемы расчитаны на получение постоянного, стабильного питания. Например 5 В. Их им поставляет источник питания. Но идеальных систем не существует и в случае резкого изменения потребления тока устройством, например когда включается компонент, источник питания не успевает «отреагировать» моментально и происходит кратковременный спад напряжения. Кроме того, в случаях когда провод от источника питания до схемы достаточно длинный, он начинает работать как антенна и тоже вносить нежелательный шум в уровень напряжения.

Обычно отклонение от идеального напряжения не превышает тысячной доли вольта и это являние абсолютно незначительно, если речь идёт о питании, например, светодиодов или электродвигателя. Но в логических цепях, где переключение логического нуля и логической единицы происходит на основе изменения малых напряжений, шумы питания могут быть ошибочно приняты за сигнал, что приведёт к неверному переключению, которое по принципу домино поставит систему в непредсказуемое состояние.

Для предотвращения таких сбоев, непосредственно перед схемой ставят резервный конденсатор

В моменты, когда напряжение полное, конденсатор заряжается до насыщения и становится запасом резервного заряда. Как только уровень напряжения на линии падает, резервный конденсатор выступает в роли быстрой батарейки, отдавая накопленный ранее заряд, чтобы заполнить пробел пока ситуация не нормализуется. Такая помощь основному источнику питания происходит огромное количество раз ежесекундно.

Если рассуждать с другой точки зрения: конденсатор выделяет из постоянного напряжения переменную составляющую и пропуская её через себя, уводит её с линии питания в землю. Именно поэтому резервный конденсатор также называют «bypass capacitor».

В итоге, сглаженное напряжение выглядит так:

Типичный конденсаторы, который используется для этих целей - керамические, номиналом 10 или 100 нФ. Большие электролитические слабо подходят на эту роль, т.к. они медленее и не смогут быстро отдавать свой заряд в этих условиях, где шум обладает высокой частотой.

В одном устройстве резервные конденсаторы могут присутствовать во множестве мест: перед каждой схемой, представляющей собой самостоятельную единицу. Так, например, на Arduino уже есть резервные конденсаторы, которые обеспечивают стабильную работу процессора, но перед питанием подключаемого к нему LCD экрана должен быть установлен свой собственный.

Фильтрующий конденсатор

Фильтрующий конденсатор используется для снятия сигнала с сенсора, который передаёт его в форме изменяющегося напряжения. Примерами таких сенсоров являеются микрофон или активная Wi-Fi антенна.

Рассмотрим схему подключения электретного микрофона. Электретный микрофон - самый распространённый и повсеместный: именно такой применяется в мобильных телефонах, в компьютерных аксессуарах, системах громкой связи.

Для своей работы микрофон требует питания. В состоянии тишины, его сопротивление велико и составляет десятки килоом. Когда на него воздействует звук, затвор встроенного внутри полевого транзистора открывается и микрофон теряет внутреннее сопротивление. Потеря и восстановление сопротивления происходит много раз ежесекундно и соответствует фазе звуковой волны.

На выходе нам интересно напряжение только в те моменты, когда звук есть. Если бы не было конденсатора C , на выход всегда бы дополнительно воздействовало постоянное напряжение питания. C блокирует эту постоянную составляющую и пропускает только отклонения, которые и соответствуют звуку.

Слышимый звук, который нам и интересен, находится низкочастотном диапазоне: 20 Гц - 20 кГц. Чтобы выделить из напряжения именно сигнал звука, а не высокочастотные шумы питания, в качестве C используется медленный электролитический конденсатор номиналом 10 мкФ. Если был бы использован быстрый конденсатор, например, на 10 нФ, на выход прошли бы сигналы, не связанные со звуком.

Обратите внимание, что выходной сигнал поставляется в виде отрицательного напряжения. То есть при соединении выхода с землёй, ток потечёт из земли к выходу. Пиковые значения напряжения в случае с микрофоном составляют десятки милливольт. Чтобы перевернуть напряжение обратно и увеличить его значение, выход V out обычно подключают к операционному уселителю.

Соединение конденсаторов

Если сравнивать с соединением резисторов , расчёт итогового номинала конденсаторов выглядит наоборот.

При параллельном соединении суммарная ёмкость суммируется:

При последовательном соединении, итоговая ёмкость расчитывается по формуле:

Если конденсатора всего два, то при последовательном соединении:

В частном случае двух одинаховых конденсаторов суммарная ёмкость последовательного соединения равна половине ёмкости каждого.

Предельные характеристики

В документации на каждый конденсатор указано максимальное допустимое напряжение. Его превышение может привести к пробою диэлектрика и взрыву конденсатора. Для электролитических конденсаторов обязательно должна быть соблюдена полярность. В противном случае либо вытечет электролит, либо опять же будет взрыв.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то