Как называется вторичный процесс переработки нефтепродуктов. Переработка нефти: способы крекинга, риформинга и пиролиза. V. месторождения нефти в рф

Процессы нефтепереработки

Сырая нефть впервые в значительных количествах была добыта в 1880 г, с тех пор ее добыча росла экспоненциально. Сырая нефть является смесью химических веществ, содержащей сотни компо­нентов. Основную массу нефти составляют углеводороды - алканы, циклоалканы, арены. Содержание в нефтях алканов (предельных углеводородов) может составлять 50-70%. Циклоалканы могут со­ставлять 30-60% общего состава сырой нефти, большинство из них является моноциклическими. Наиболее часто можно обнару­жить циклопентан и циклогексан. Непредельные углеводороды (алкены), как правило, в нефти отсутствуют. Арены (ароматиче­ские углеводороды) составляют меньшую долю общего состава по сравнению с алканами и циклоалканами. В легкокипящих фрак­циях нефти преобладают простейший ароматический углеводород бензол и его производные.

Помимо углеводородов в составе органической части нефти находятся смолистые и асфальтовые вещества, представляющие собой высокомолекулярные соединения углерода, водорода, серы и кислорода, сернистые соединения, нафтеновые кислоты, фено­лы, азотистые соединения типа пиридина, хинолина, различные амины и др. Все эти вещества являются нежелательными приме­сями нефти. Для очистки от них требуется сооружение специаль­ных установок. Сернистые соединения, вызывающие коррозию аппаратуры, наиболее вредны как при переработке нефти, так и при использовании нефтепродуктов. К минеральным примесям нефти относят воду, присутствую­щую, как правило, в двух видах - легко отделяемую от нефти при отстаивании и в виде стойких эмульсий. Вода содержит раство­ренные в ней минеральные соли - NaCI, СаС1 2 , MgCl, и др. Зола составляет в нефти сотые и тысячные доли процента. Кроме того, в нефти имеются механические примеси - твердые частицы песка и глины.

Важнейшие нефтепродукты

Из нефти в процессе переработки получают топливо (жидкое и газообразное), смазочные масла и консистентные смазки, раство­рители, индивидуальные углеводороды - этилен, пропилен, ме­тан, ацетилен, бензол, толуол, ксилол и др., твердые и полутвер­дые смеси углеводородов (парафин, вазелин, церезин), нефтяные битумы и пеки, технический углерод (сажу) и др.

Жидкое топливо подразделяют на моторное и котельное. Мо­торное топливо, в свою очередь, делят на карбюраторное, реак­тивное и дизельное. Карбюраторное топливо включает в себя авиа­ционные и автомобильные бензины, а также тракторное топливо - лигроины и керосины. Топливо для авиационных реактивных дви­гателей представляет собой фракции керосина различного состава или их смесь с бензиновыми фракциями (авиакеросины). Дизель­ное топливо содержит газойли, соляровые фракции, применяемые в поршневых двигателях внутреннего сгорания с зажиганием от сжатия. Котельное топливо сжигается в топках тепловозов, паро­ходов, тепловых электростанций, в промышленных печах и под­разделяется на мазут топочный, топливо МП для мартеновских печей.

К газообразному топливу относят углеводородные сжижен­ные топливные газы, применяемые для коммунально-бытового обслуживания. Это смеси пропана и бутана в разных соотно­шениях.

Смазочные масла , предназначенные для жидкостного смазыва­ния в различных машинах и механизмах, подразделяют в зависи­мости от применения на индустриальные, турбинные, компрес­сорные, трансмиссионные, изоляционные, моторные. Специальные масла предназначены не для смазывания, а для применения в ка­честве рабочих жидкостей в тормозных смесях, гидравлических устройствах, пароструйных насосах, а также в трансформаторах, конденсаторах, маслонаполненных электрокабелях в качестве электроизолирующей среды. Названия этих масел отражают об­ласть их использования, например трансформаторное, конденса­торное и т. п.

Консистентные смазки представляют собой нефтяные масла, загущенные мылами, твердыми углеводородами и другими загустителями. Все смазки делят на два класса: универсальные и спе­циальные. Смазки отличаются большим многообразием, их насчи­тывается свыше ста наименований.

Индивидуальные углеводороды , получаемые в результате перера­ботки нефти и нефтяных газов, служат сырьем для производства полимеров и продуктов органического синтеза. Из них наиболее важны предельные - метан, этан, пропан, бутан и др.; непредель­ные - этилен, пропилен; ароматические - бензол, толуол, ксило­лы. Помимо перечисленных индивидуальных углеводородов про­дуктами переработки нефти являются предельные углеводороды с большой молекулярной массой (С 16 и выше) - парафины, цере­зины, применяемые в парфюмерной промышленности и в виде загустителей для консистентных смазок.

Нефтяные битумы , получаемые из тяжелых нефтяных остатков их окислением, используют для дорожного строительства, получе­ния кровельных материалов, приготовления асфальтовых лаков и полиграфических красок и др.

Одним из главных продуктов переработки нефти является мо­торное топливо , которое включает в себя авиационные и автомо­бильные бензины. Важное свойство бензина, характеризующее его способность противостоять преждевременному воспламенению в камере сгорания,- детонационная стойкость . Стук в двигателе указывает обычно на то, что произошло опережающее взрывное воспламенение и энергия израсходована бесполезно.

По эмпирической шкале, введенной в 1927 г., принимают октановое число для н-гептана, который очень легко детонирует, равным нулю, а для изооктана, обладающего высокой стойкостью к детонации, равным 100. Если, например, испытуе­мый бензин по детонационной стойкости оказался при испытаниях эквивалентным смеси, состоящей из 80% изооктана и 20% н-геп­тана, то его октановое число равно 80. Со времени введения шка­лы были найдены эталоны, превосходящие по детонационной стойкости изооктан, и в настоящее время октановая шкала расши­рена до 120.

Определение октанового числа различных углеводородов по­казало, что в ряду алканов октановое число повышается по мере их разветвления и понижается с возрастанием длины углеводород­ной цепи. Октановое число алкенов выше, чем соответствующих алканов, и повышается по мере смещения двойной связи к центру молекул. У циклоалканов октановое число выше, чем у алканов. Наиболее высокие октановые числа имеют ароматические углево­дороды; так, например, октановое число н-пропилбензола равно 105, этилбензола- 104, толуола - 107.

Бензин, полученный в процессе прямой перегонки нефти, со­стоит в основном из алканов с октановым числом 50-70. Для по­вышения октанового числа осуществляют обработку, в результате которой углеводороды бензина изомеризуются с образованием более благоприятных структур, а также используют антидетона­торы - вещества, которые добавляют к бензинам в количестве не более 0,5% для значительного увеличения их детонационной стой­кости.

В качестве антидетонатора впервые начали применять тетраэтилсвинец (ТЭС) РЬ(С 2 Н 5) 4 , промышленный выпуск которого начался в 1923 г. Ипользуют также и другие алкилы свинца, на­пример тетраметилсвинец. К новым добавкам относятся карбонилы переходных металлов. Антидетонаторы, в частности ТЭС, при­меняют в смеси с этилбромидом, дибромэтаном, дихлорэтаном, монохлорнафталином (этиловая жидкость). Бензины с добавлени­ем этиловой жидкости называются этилированными. Этиловая жидкость очень ядовита, и при обращении с ней и этилированны­ми бензинами необходимо соблюдать специальные правила пре­досторожности.

Первичная переработка нефти

Подготовка нефти к переработке. Сырая нефть содержит раст­воренные в ней газы, называемые попутными, воду, минеральные соли, различные механические примеси. Подготовка нефти к пе­реработке сводится к выделению из нее этих включений и нейтра­лизации химически активных примесей.

Выделение из нефти попутных газов проводится в газоотдели­телях уменьшением растворимости газов вследствие снижения давления. Затем газы направляются для дальнейшей переработки на газобензиновый завод, где из них извлекают газовый бензин, этан, пропан, бутан. Окончательное отделение газов от нефти про­исходит в стабилизационных установках, где они отгоняются в спе­циальных ректификационных колоннах.

В специальном подогревателе выделяют из нефти легкие бензи­новые фракции, а затем, добавив в нее деэмульгатор, направляют в отстойные резервуары. Здесь происходят освобождение нефти от песка и глины и обезвоживание. Для разрушения эмульсий и уда­ления воды применяют различные способы, в том числе термохи­мическую обработку под давлением. Более качественным способом разрушения эмульсий является электрический способ, заключаю­щийся в пропускании нефти между электродами, включенными в цепь переменного электрического тока высокого напряжения (30-45 кВ). При обезвоживании нефти происходит и удаление зна­чительной части солей (обессоливание).

Присутствующие в нефти химически активные примеси в виде серы, сероводорода, солей, кислот нейтрализуются растворами щелочей или аммиака. Этот процесс, имеющий целью предотвра­щение коррозии аппаратуры, называется защелачиванием нефти.

Кроме того, подготовка нефти к переработке включает в себя сортировку и смешение нефтей для получения более равномерного по составу сырья.

Перегонка нефти. Первичная перегонка нефти - первый техно­логический процесс переработки нефти. Установки первичной переработки имеются на каждом нефтеперерабатывающем заводе.

Перегонка, или дистилляция,- это процесс разделения смеси взаимнорастворимых жидкостей на фракции, которые отличаются по температурам кипения как между собой, так и с исходной сме­сью. На современных установках перегонка нефти проводится с применением однократного испарения. При однократном испарении низкокипящие фракции, перейдя в пары, остаются в аппарате и снижают парциальное давление испаряю­щихся высококипящих фракций, что дает возможность вести пе­регонку при более низких температурах.

При однократном испарении и последующей конденсации па­ров получают две фракции: легкую, в которой содержится больше низкокипящих компонентов, и тяжелую, с меньшим числом низкокипящих компонентов, чем в исходном сырье, т. е. при перегон­ке происходит обогащение одной фазы низкокипящими, а другой высококипящими компонентами. При этом достичь требуемого разделения компонентов нефти и получить конечные продукты, кипящие в заданных температурных интервалах, используя пере­гонку, нельзя. В связи с этим после однократного испарения неф­тяные пары подвергают ректификации.

На установках первичной перегонки нефти однократное испа­рение и ректификация, как правило, совмещаются. Для перегонки нефти используют одно- и двухступенчатые трубчатые установки. Теплоту, необходимую для проведения процесса, получают в труб­чатых печах.

В зависимости от общей схемы нефтеперерабатывающего завода и свойств поступающей для переработки нефти перегонку ведут либо на атмосферных трубчатых установках (AT), либо на установках, сочетающих атмосферную и вакуумную перегонку,- атмосферно-вакуумных трубчатых установках (АВТ).

По высоте колонны отбираются дистилляты различного состава в строго определенных интервалах температур. Так, при 300-350 °С конденсируется и отбирается соляровое масло, при 200-300 °С - керосин, при 160-200 °С - лигроиновая фракция. Из верхней части колонны выводятся пары бензина, которые охлаждаются и конденсируются в теплообменниках. Часть жидкого бензи­на подают на орошение колонны. В ее нижней части собирается мазут, который подвергают дальнейшей перегонке для получения из него смазочных масел во второй ректификационной колонне, работающей под вакуумом во избежание рас­щепления углеводородов под воздействием высоких температур. Гудрон ис­пользуется как сырье для термического крекинга, коксования, производства битума и высоковязких масел.


Похожая информация.


. Нефть – это природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ). См. также НЕФТЬ И ГАЗ. ХИМИЧЕСКИЙ СОСТАВ НЕФТЕЙ Соединения сырой нефти – это сложные вещества, состоящие из пяти элементов – C, H, S, O и N , причем содержание этих элементов колеблется в пределах 82–87% углерода, 11–15% водорода, 0,01–6% серы, 0–2% кислорода и 0,01–3% азота. Углеводороды – основные компоненты нефти и природного газа. Простейший из них – метан CH 4 – является основным компонентом природного газа. Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей – на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды. См. также ХИМИЯ ОРГАНИЧЕСКАЯ. Парафиновые углеводороды (общей формулы C n H 2n + 2) относительно стабильны и неспособны к химическим взаимодействиям. Соответствующие олефины (C n H 2n ) и ацетилены (C n H 2n – 2) обладают высокой химической активностью: минеральные кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи между атомами углерода и переводят их в простые одинарные; возможно, благодаря их высокой реакционной способности такие углеводороды отсутствуют в природной нефти. Соединения с двойными и тройными связями образуются в крекинг-процессе при удалении водорода из парафиновых углеводородов во время деструкции последних при высоких температурах. Циклопарафины составляют важную часть большинства нефтей. Они имеют то же относительное количество атомов углерода и водорода, что и олефины. Циклопарафины (называемые также нафтенами) менее реакционноспособны, чем олефины, но более, чем парафины с открытой углеродной цепью. Часто они представляют собой главную составную часть низкокипящих дистиллятов, таких, как бензин, керосин и лигроин, полученных из сырой нефти. Ароматические углеводороды имеют циклическое строение; циклы состоят из шести атомов углерода, соединенных попеременно одинарной и двойной связью. В легких нефтепродуктах из дистиллятов каменноугольного дегтя ароматические углеводороды присутствуют в б ó льших количествах, чем в первичных и крекинг-дистиллятах нефти. Они входят в состав бензина. В заметных количествах такие соединения присутствуют только в некоторых сырых нефтях, например на месторождениях о.Борнео (Калимантан). Они могут быть получены дегидрированием циклогексанов нефти с использованием катализаторов и высоких температур. Сернистые соединения. Наряду с углеводородами нефти содержат органические соединения серы, кислорода и азота. Сернистые соединения имеют характер либо открытых, либо замкнутых цепей. Примером первых являются алкил-сульфиды и меркаптаны.

Многие сернистые соединения нефти представляют собой производные тиофена – гетероциклического соединения, молекула которого построена как бензольное кольцо, где две

CH -группы заменены на атом серы. Большая часть сернистых соединений сосредоточена в тяжелых фракциях нефтей, соответствующих гидрированным тиофенам и тиофанам. Сера в нефтях – нежелательный компонент. Сернистые соединения обычно имеют резкий неприятный запах и часто коррозионноактивны как в природном виде, так и в виде продуктов горения. Для удаления серы и ее соединений разработано много специальных процессов очистки. Кислородные соединения. Некоторые имеющиеся в нефтях кислородные соединения относятся к нафтеновым кислотам. Соединения этого типа встречаются довольно часто, и содержание их в некоторых нефтях России и Калифорнии достигает одного и более процента. Медьсодержащие нафтены используются как консерванты дерева, а кобальт-, марганец- и свинецсодержащие – как отвердители красок и лаков.

Фенолы (производные ароматических углеводородов, в которых присутствует гидроксильная группа ОН), обнаружены в дистиллятах нефтей США, Японии и Польши. Эти соединения обычно являются продуктом крекинг-процессов, поскольку большей частью обнаруживаются в крекинг-дистиллятах и лишь частично в первичных дистиллятах. Промышленное производство креозолов (производных ароматических углеводородов, в которых присутствуют как гидроксильная, так и метильная группы), из крекинг-дистиллятов калифорнийских нефтей экономически выгодно, даже несмотря на их низкое содержание (менее 0,01%).

Азотсодержащие соединения. Содержание азота в нефтях изменяется от следов до 3%. Азотсодержащие соединения в нефтях представлены соединениями ряда хинолина, частично или полностью насыщенными водородом и другими органическими радикалами; эти соединения, как правило, находятся в высококипящих фракциях сырых нефтей, начиная с керосина. Неорганические соединения. Почти все нефти содержат небольшое количество неорганических соединений, которые остаются в виде золы после сгорания нефтей. Зола содержит кремнезем, алюминий, известь, оксиды железа и марганца. Используя такие методы, как экстракция растворителем, иногда выгодно получать соединения ванадия из сажи, образующейся при сгорании ванадийсодержащих нефтей. Однако, как правило, использование нефтяной золы ныне весьма ограничено. ОЧИСТКА И ПЕРЕРАБОТКА НЕФТИ Обычная сырая нефть из скважины – это зеленовато-коричневая легко воспламеняющаяся маслянистая жидкость с резким запахом. На промыслах она хранится в крупных резервуарах, откуда транспортируется танкерами или по трубопроводам в резервуары перерабатывающих заводов. На многих заводах различные типы сырых нефтей разделяются по их свойствам согласно результатам предварительной лабораторной переработки. Она указывает приблизительное количество бензина, керосина, смазочных масел, парафина и мазута, которое можно выработать из данной нефти. Химически нефти очень различны и изменяются от парафиновых, которые состоят большей частью из парафиновых углеводородов, до нафтеновых или асфальтеновых, которые содержат в основном циклопарафиновые углеводороды; существует много промежуточных или смешанных типов. Парафиновые нефти по сравнению с нафтеновыми или асфальтеновыми обычно содержат больше бензина и меньше серы и являются главным сырьем для получения смазочных масел и парафинов. Нафтеновые типы сырых нефтей, в общем, содержат меньше бензина, но больше серы и мазута, а также асфальта.

Сырая нефть содержит некоторое количество растворенного газа, который соответствует по составу и строению природным газам и состоит из легких парафиновых углеводородов. Жидкая фаза сырой нефти содержит сотни углеводородов и других соединений, имеющих точку кипения от 38

° С до примерно 430 ° С, причем процентное содержание каждого из углеводородов невелико. Например, бензиновая фракция может содержать до 200 индивидуальных углеводородов, однако в типичном бензине присутствует лишь около 60 углеводородов – от метана с т.кип. –161 ° С до мезитилена (ароматического углеводорода), с т.кип. 165 ° С. Они включают парафины, циклопарафины и ароматические соединения, но олефины отсутствуют. Огромный труд, необходимый для анализа состава углеводородов бензинов, делает практически невозможным проведение этих исследований при обычных шаблонных определениях. Что касается соединений, кипящих при температурах выше 165 ° С, присутствующих в керосине и высококипящих дистиллятах и остатках, трудности идентификации отдельных компонентов возрастают из-за большого количества соединений, перекрывания их температур кипения и возрастающей тенденции высококипящих соединений к разрушению при нагревании. Поэтому все горючие нефтяные продукты подразделяются на фракции по температурным пределам их кипения и по плотности, а не по химическому составу.

Соединения, присутствующие в асфальтах и подобных им тяжелых остаточных продуктах, чрезвычайно сложны. Анализы показывают, что они представляют собой полициклические соединения. См. также КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ.

ПЕРЕГОНКА Периодическая перегонка. На начальных этапах развития нефтехимической промышленности сырая нефть подвергалась так называемой периодической перегонке в вертикальном цилиндрическом перегонном аппарате. Процессы дистилляции были неэффективны, потому что отсутствовали ректификационные колонны и не получалось чистого разделения продуктов перегонки. Трубчатые перегонные аппараты. Развитие процесса периодической перегонки привело к использованию общей ректификационной колонны, из которой с различных уровней отбирались дистилляты с разной температурой кипения. Эта система используется и сегодня. Поступающая нефть нагревается в змеевике примерно до 320 ° С, и разогретые продукты подаются на промежуточные уровни в ректификационной колонне. Такая колонна может иметь от 30 до 60 расположенных с определенным интервалом поддонов и желобов, каждый из которых имеет ванну с жидкостью. Через эту жидкость проходят поднимающиеся пары, которые омываются стекающим вниз конденсатом. При надлежащем регулировании скорости обратного стекания (т.е. количества дистиллятов, откачиваемых назад в колонну для повторного фракционирования) возможно получение бензина наверху колонны, керосина и светлых горючих дистиллятов точно определенных интервалов кипения на последовательно снижающихся уровнях. Обычно для того, чтобы улучшить дальнейшее разделение, остаток от перегонки из ректификационной колонны подвергают вакуумной дистилляции.

Конструкция ректификационных колонн в нефтеперерабатывающей промышленности становится произведением искусства, в котором ни одна деталь не остается без внимания. Путем очень точного контроля температуры, давления, а также потоков жидкостей и паров разработаны методы сверхтонкого фракционирования. Эти колонны достигают высоты 60 м и выше и позволяют разделять химические соединения, т.кип. которых отличается менее чем на 6

° С. Они изолированы от внешних атмосферных воздействий, а все этапы дистилляции автоматически контролируются. Процессы в некоторых таких колоннах происходят в условиях высоких давлений, в других – при давлениях, близких к атмосферному; аналогично температуры изменяются от экстремально высоких до значений ниже –18 ° С. ТЕРМИЧЕСКИЙ КРЕКИНГ Склонность к дополнительному разложению более тяжелых фракций сырых нефтей при нагреве выше определенной температуры привела к очень важному успеху в использовании крекинг-процесса. Когда происходит разложение высококипящих фракций нефти, углерод-углеродные связи разрушаются, водород отрывается от молекул углеводородов и тем самым получается более широкий спектр продуктов по сравнению с составом первоначальной сырой нефти. Например, дистилляты, кипящие в интервале температур 290–400 ° С, в результате крекинга дают газы, бензин и тяжелые смолоподобные остаточные продукты. Крекинг-процесс позволяет увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки.

Выход кокса определяется природой перерабатываемого сырья и степенью рециклизации наиболее тяжелых фракций.

Как правило, из исходного крекируемого объема образуется примерно 15–25% лигроина и 35–50% газойля (т.е. легкого дизельного топлива) наряду с крекинг-газами и коксом. Последний используется в основном как топливо, исключая образующиеся специальные виды кокса (один из них является продуктом обжига и используется при производстве углеродных электродов). Коксование до сих пор пользуется популярностью главным образом как процесс подготовки исходного материала для каталитического крекинга.

КАТАЛИТИЧЕСКИЙ КРЕКИНГ Катализатор – это вещество, которое ускоряет протекание химических реакций без изменения сути самих реакций. Каталитическими свойствами обладают многие вещества, включая металлы, их оксиды, различные соли. См. также КАТАЛИЗ. Процесс Гудри. Исследования Э.Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса.

Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т.е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430–480

° С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах.

Целью большинства крекинг-процессов является достижение оптимального выхода бензина. При крекинге происходят распад тяжелых молекул, а также сложные процессы синтеза и перестройки структуры молекул углеводородов. Влияние разных катализаторов различно. Некоторые из них, такие, как оксиды хрома и молибден, ускоряют реакцию дегидрогенизации (отщепление водорода). Глины и специальные алюмосиликатные составы, используемые в промышленном каталитическом крекинге, способствуют ускоренному разрыву углерод-углеродных связей больше, чем отрыву водорода. Они также способствуют изомеризации линейных молекул в разветвленные. Эти составы замедляют полимеризацию (см. ниже ) и образование дегтя и асфальта, так что нефти не просто деструктурируются, а обогащаются полезными компонентами.

РИФОРМИНГ Риформинг – это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина.

При термическом риформинге, как и при каталитическом крекинге, основная цель состоит в превращении низкооктановых бензиновых компонентов в более высокооктановые. Процесс обычно применяется к парафиновым фракциям прямой перегонки, кипящим в пределах 95–205

° С. Более легкие фракции редко подходят для таких превращений.

Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.

Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.

Большинство установок риформинга – это установки с неподвижным слоем. (Процесс каталитического риформинга, в котором используется стационарный катализатор, называется платформингом.) Но под действием давления ок. 50 атм (при получении бензина с умеренным октановым числом) активность платинового катализатора сохраняется примерно в течение месяца. Установки, в которых используется один реактор, приходится останавливать на несколько суток для регенерации катализатора. В других установках используется несколько реакторов с одним добавочным, где проводится необходимая регенерация. Жизнь платинового катализатора сокращается при наличии серы, азота, свинца и других «ядов». Там, где эти компоненты представляют проблему, обычно до входа в реактор проводят предварительную обработку смеси водородом (т.н. гидроочистка, когда до подачи в реактор нефтяных погонов – бензинов прямой перегонки – их пропускают через водородсодержащие газы, которые связывают вредные компоненты и снижают их содержание до допустимых пределов). Некоторые реакторы с неподвижным слоем заменяются на реакторы с непрерывной регенерацией катализатора. В этих условиях катализатор перемещается через реактор и непрерывно регенерируется.

Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:

1) дегидрирование нафтенов и их превращение в соответствующие ароматические соединения;

2) превращение линейных парафиновых углеводородов в их разветвленные изомеры;

3) гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;

4) образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.

Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т.п.

ДРУГИЕ ПРОЦЕССЫ ПРОИЗВОДСТВА БЕНЗИНА Кроме крекинга и риформинга существует несколько других важных процессов производства бензина. Первым из них, который стал экономически выгодным в промышленных масштабах, был процесс полимеризации, который позволил получить жидкие бензиновые фракции из олефинов, присутствующих в крекинг-газах. Полимеризация. Полимеризация пропилена – олефина, содержащего три атома углерода, и бутилена – олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82. Нефтеперерабатывающие заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода. Алкилирование. В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан.

Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала

0–15 ° C , а затем 20–40 ° С. Изомеризация. Другой важный путь получения высокооктанового сырья для добавления в моторное топливо – это процесс изомеризации с использованием хлорида алюминия и других подобных катализаторов.

Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями. Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан. Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т.е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду).

ГИДРОКРЕКИНГ Ранние работы по получению жидкого топлива из углей путем гидрирования под высоким давлением (процесс Бергуса) проводились главным образом в Германии с использованием весьма сильных катализаторов, таких, как оксиды молибдена, которые либо нечувствительны к присутствию серы, либо в значительной степени сохраняют свою активность после прошедшей сульфатизации. Для этого были необходимы следующие параметры: давление до 280 атм, температура ок. 450 ° С и катализатор.

Давления, используемые в современных процессах гидрокрекинга, составляют от примерно 70 атм для превращения сырой нефти в сжиженный нефтяной газ (

LP -газ) до более чем 175 атм, когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков – мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном – высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе.

Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75–80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20–30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации.

Необходимость уменьшения загрязнения воздуха в промышленных районах США, Западной Европы и Японии обусловливает значительное увеличение использования процессов гидрирования для десульфатизации дистиллятов и остаточных топлив. Процессы гидрокрекинга, предназначенные главным образом для удаления серы при невысоких требованиях к выходу продукции, известны как «гидроочистка».

Газообразные легкие фракции прежде всего проходят через вакуумную установку для сжижения, затем полученный на этой стадии газойль проходит десульфуризацию гидроочисткой, прежде чем вновь смешивается с некоторыми вакуумными остатками и другими низкосернистыми легкими фракциями сырой нефти.

ОЧИСТКА ЛЕГКИХ ПРОДУКТОВ Гидроочистка в настоящее время – наиболее распространенный метод гидрогенизации олефинов и повышения качества легких продуктов за счет удаления серы и других примесей. По экономическим причинам, а также из-за проблем, связанных с примесями воздуха и воды, применяются и другие методы, например использование сульфида свинца в качестве катализатора в регенеративных растворителях и предварительное рафинирование с применением высоковольтных электропечей для лучшего отделения очищающего реагента от получаемого продукта. МАСЛА И СМАЗКИ Нефтяная промышленность поставляет масла и смазки, различающихся по вязкости от жидких, почти как вода, до консистенции патоки. Как и в случае с другими нефтяными фракциями и продуктами, появились новые методы их производства – экстракция и деасфальтизация растворителями и др. Экстракция растворителями. К промышленным растворителям относятся хлорекс, фурфурол (побочный продукт переработки овсяной шелухи), нитробензол, фенолы, метилэтилкетоны и пр. Экстракция растворителями осуществляется обычно в режиме противотока (поток масел идет в одном направлении, а растворителя – в противоположном), что позволяет проводить более выборочное растворение и более глубокую очистку. При еще более избирательной процедуре колонна наполняется пористой средой (выполненной, например, в виде перфорированных пластин). Сжиженный пропан. Эффективность обработки смазочных масел повышается при использовании сжиженного пропана под давлением. Этот парафиновый углеводород (т. кип. –42 ° С) практически не оказывает растворяющего действия на асфальты и очень слабо растворяет твердые парафины при низких температурах. Тем не менее, регулируя и подбирая температуру и соотношения растворитель/масла, можно успешно удалять асфальт и твердые парафины. Депарафинизация растворителями. Депарафинизация растворителями – важный этап производства смазочных масел. Депарафинизация неочищенных или очистка смазочных масел дает разнообразные продукты – от светлых веретенных масел до тяжелых вакуумных смазок и товарных парафинов. Наиболее широко используются для депарафинизации смеси метилэтилкетона и толуола или бензола и ацетона. КРЕКИНГ-ГАЗ Вторичные газообразные продукты получаются из нефти в результате различных процессов крекинга. Тяжелые фракции при крекинге дают бензин, а бензиновые фракции умеренно крекируются с увеличением октанового числа. Газы, получающиеся при этих процессах, могут составлять 2–10% (масс.) от крекируемой нефти; они заметно отличаются от природных нефтяных газов. Главная их особенность – наличие олефинов, которые полностью отсутствуют в природных газах. В газах высокотемпературного крекинга может содержаться 50% олефинов, включая этилен, пропилен и бутилены. Как правило, олефины составляют более 10–25%. Крекинг-газы обычно содержат также небольшое количество водорода. Температура крекинга 540 ° С или выше при невысоком давлении благоприятна для образования этилена, а более умеренные температуры 455–480 ° С и высокое давление – для образования меньшего количества этилена и пропорционально большего количества пропилена и бутиленов. БЕНЗИН Бензин – самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив. Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина. Состав. Промышленный бензин представляет собой смесь углеводородов в интервале т.кип. 30–200 ° C . Некоторые бутаны, кипящие при температуре ниже 38 ° С, имеет высокое давление паров. Углеводороды в бензине включают многие изопарафины, а также ароматические углеводороды и нафтены, а в бензинах, полученных при крекинге, содержится от 15 до 25% олефинов. Октановое число углеводородов снижается в следующем порядке: изопарафины > ароматические > олефины > нафтены > н-парафины. Имеются различия между компонентами каждой из этих групп, зависящие от структуры молекул и точки кипения. Различные компоненты дают свой вклад в октановое число бензиновых смесей.

Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.

Классификация бензинов. Бензины классифицируются по разным основаниям, включая интервалы температур кипения, октановое число, содержание серы. Интервалы температур кипения. Большинство бензинов кипит в интервале 30–200 ° С. 50%-ная точка, т.е. температура, при которой кипит половина компонентов смеси и которая определяет состав смеси во время прогрева двигателя, а частично и при разгоне транспортного средства, располагается в пределах 98–104 ° С. Высокое содержание низкокипящих компонентов, таких, как бутаны и пентаны, обусловливает исключительно высокое давление паров и в теплое время является причиной образования паровых пробок, когда газовые пузырьки препятствуют течению топлива по узким трубам двигателей и тепловых установок. В то же время недостаток низкокипящих компонентов служит причиной трудностей запуска двигателя зимой. 90%-ная точка кипения бензина определяет время прогрева двигателя и эффективность использования топлива. Октановое число. Октановое число – наиболее важная характеристика бензина. Оно обычно определяется в одноцилиндровой стационарной установке, снабженной различными приборами для регистрации склонности к детонации. Нормальный гептан (семь атомов углерода в линейной цепи) детонирует очень легко; для него принято нулевое октановое число. Изооктан (восемь атомов углерода в разветвленной цепи) не детонирует до тех пор, пока не будут достигнуты экстремальные условия давления, температуры и нагрузки; для него произвольно установлено октановое число 100. При испытании бензина с неизвестными детонационными свойствами его сравнивают со смесью гептана и изооктана, имеющей такую же способность к детонации, как и испытуемый бензин; октановое число бензина – это процентное содержание изооктана в такой смеси. Октановое число, определенное таким образом, не всегда соответствует характеристике в многоцилиндровом двигателе в дорожных условиях при изменяющихся скоростях, нагрузках и ускорениях.

В нефтяной промышленности используются два метода, делающие это сравнение более реальным, – моторный метод и исследовательский метод. Октановое число определяется как среднее из двух таких определений.

Присадки. Практически все бензины содержат различные присадки, в том числе ингибиторы смолообразования и небольшое количество красителя. Законодательством многих промышленно развитых стран существенно снижен допустимый уровень соединений свинца в бензине (этилированный бензин, т.е. содержащий добавки тетраэтилсвинца, повышающие октановое число бензина, составляет менее 20% от всего бензина, вырабатываемого в США). КЕРОСИН Керосин – это легчайшее и наиболее летучее жидкое топочное топливо. Первоначально керосин использовался только для освещения, теперь он употребляется как топливо в пекарнях, отопительных и нагревательных приборах, оборудовании ферм, а также как компонент моторного топлива. Хороший керосин должен иметь особый цвет (приблизительно 250–300 мм по шкале Штаммера для нефтепродуктов), достаточную вязкость для устойчивой и равномерной пропитки фитиля, должен гореть ясным высоким пламенем без копоти или отложения твердых углистых осадков на фитиле, копоти в дымоходах и на ламповом стекле. Безопасность керосина при использовании в осветительных лампах определяется стандартным тестом на вспышку. Керосин медленно нагревают в небольшой стеклянной или металлической чашке и к поверхности периодически прикасаются пламенем до тех пор, пока не появится небольшой дымок, соответствующий точке воспламенения. ДРУГИЕ ПРОДУКТЫ Дизельное топливо. Промежуточные нефтяные дистилляты, кипящие при температурах выше, чем керосин, но ниже, чем смазочные масла, представляют собой горючее для средне- и высокоскоростных дизельных двигателей. Цетановое число. Дизельные топлива оцениваются их цетановым числом – это реальное измерение легкости воспламенения под действием температуры и давления, а не способности горения . При этом топливо сравнивается со смесью цетана – парафинового углеводорода с 16-ю атомами углерода, который легко воспламеняется под давлением, и a -метилнафталина, который не возгорается. Процент цетана в смеси, показывающий ту же воспламеняемость, что и дизельное топливо в стандартных условиях испытания, называется цетановым числом. Парафиновые топлива более подходят для дизельных двигателей, поскольку они легко воспламеняются под давлением без дополнительной искры зажигания. Однако в связи с возрастающей потребностью в дистиллятах прямой перегонки для других целей, кроме получения дизельного топлива, увеличивается использование тяжелых дистиллятов с более низким цетановым числом, получаемых при каталитическом крекинге. Повышение надежности воспламенения низкокачественных дизельных топлив, улучшение воспламеняемости, более известное как увеличение цетанового числа, достигается добавлением специальных масел. Они включают такие компоненты, как органические оксиды и пероксиды. Небольшие добавки амилнитрата удовлетворительно улучшают качество топлив. Реактивные топлива. Реактивные нефтяные топлива могут быть керосиновые либо нафтеновые. Они состоят главным образом из бензина прямой перегонки или керосина в топливах керосинового типа либо топливах №1 нафтенового типа. Топливо для отопления зданий. Использование легких дистиллятов в качестве бытового топлива постоянно возрастает, так как они удобнее и чище по сравнению, например, с углем. Конкуренцию им составляют природный газ и электричество. Мазут. Большинство промышленных котельных и тепловых электростанций используют в качестве топлив черные вязкие остаточные продукты переработки нефти – топочный мазут. В большинстве случаев это продукты крекинга, хотя имеются и продукты прямой перегонки. Парафиновые воски являются главным средством для защиты оборудования от действия воды. Все они имеют водяно-белый цвет и температуру плавления в пределах 50–95 ° С. Микрокристаллические воски используются как изоляция в самых разнообразных отраслях, таких, как электротехническая промышленность и промышленность средств связи, а также при печати, гравировке и т.д. Вазелин, состоящий из тяжелых нефтяных остатков и парафиновых восков, производится фильтрованием цилиндровых дистиллятов и применяется в технике (в качестве антикоррозионной смазки и др.) и медицине (главным образом для изготовления мазей). ХИМИЧЕСКИЕ ПРОДУКТЫ ИЗ НЕФТИ Получение нефтепродуктов путем фракционирования. Нефтяная промышленность – это главный производитель химикатов. Ее первые успехи в разделении индивидуальных углеводородов были достигнуты при фракционировании природного газа и природного бензина. Первыми компонентами, выделенными таким путем, были метан, этан, пропан, нормальный бутан, изобутан и пентины. Соответствующим образом спроектированные ректификационные колонны дают возможность выделять из крекинг-газов небольшие фракции с узким диапазоном температур кипения, которые служат первичным сырьем для химического производства, – это углеводороды, имеющие от одного до пяти атомов углерода (как парафины, так и олефины). Химические продукты, получаемые окислением природного газа. Большое число химикатов производится в промышленных количествах путем окисления природного газа. Они включают метиловый (древесный) спирт, этиловый (пищевой) спирт, пропиловый спирт (с тремя атомами углерода), формальдегид, ацетон, метилэтилкетон, муравьиную кислоту, уксусную кислоту. Из этих компонентов, первично содержащих кислород, производятся многие другие продукты, хорошо известные в органической химии. Химические продукты, получаемые из олефинов. Олефины в крекинг-газах и низкокипящих фракциях нефтей легко реагируют с хлором, хлороводородной кислотой, серной кислотой и другими реагентами, образуя новые исходные вещества для дальнейшей переработки и производства большого числа химических продуктов. Из этого сырья производятся фреоны, гликоли, глицерин, каучук, пластмассы, инсектициды, спирты и моющие средства. Химические продукты, получаемые с помощью других процессов. Аммиак синтезируется из водорода, получаемого при крекинге природного газа, и азота, извлекаемого дистилляцией из сжиженного воздуха. Азотная кислота и нитрат аммония, используемые для производства удобрений и взрывчатых веществ, также получаются из аммиака. См. также НЕФТЕХИМИЧЕСКИЕ ПРОДУКТЫ.

ПРОДУКТЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА

ПРИРОДНЫЙ ГАЗ


ПРИРОДНЫЙ ГАЗ
Бытовое и промышленное топливо
Агент для добычи нефти
Сырье для производства синтетических углеводородных продуктов
Производство газовой сажи
СЖИЖЕННЫЙ ПРИРОДНЫЙ ГАЗ Бензин
Сжиженные газы, бытовое и промышленное топливо, освещение Сырье для производства синтетических углеводородных продуктов

СЫРАЯ НЕФТЬ

Неконденси-

Резка металла и производство синтетических углеводородных продуктов

ЗАВОДСКОЙ ГАЗ

рующийся газ

Легкие углеводороды

Сварка, очищенные топлива, охладители

Газовая сажа

Резиновые шины, чернила и краски

Сжиженный газ

Приготовление пищи и отопление
Синтетическое моторное топливо

Легкий бензин

Горючее для газобензиновых двигателей

ЛЕГКИЕ ДИСТИЛЛЯТЫ

Бензин

Средний бензин

Автомобильный бензин
Авиационный бензин
Растворители
Взрывчатые вещества
Смешанные лигроины
Сырье для производства синтетических химических продуктов

Тяжелый бензин

Художественный краски, олифы, масляные краски
Красители и растворители
Растворители и разбавители красок

Керосин

Средства для уничтожения насекомых
Топливо для реактивных двигателей, печей, тракторов и осветительных приборов

СРЕДНИЕ ДИСТИЛЛЯТЫ

Газойль

Добавки к смазочным маслам
Моющие средства
Нафтеновые кислоты
Бытовое отопление, использование в металлургии, горючее для дизельных двигателей и легкое промышленное топливо

Поглотительные масла

Регенерация бензина и бензола

Светлые масла

Технические масла

Ядохимикаты для опыления насекомых и растений
Использование при выпечке хлеба, упаковке фруктов, яиц, изготовлении конфет и др.

Медицинские масла

Мази и кремы
Косметика
Медицинские масла для приема внутрь

Насыщенные масла

Масла для обработки дерева, кожи и др.

Эмульгирован-ные масла

Масла, используемые при резании, изготовлении бумаги, текстиля, выделке кожи

Масла для электроэнерге-тики

Трансформаторное масло, масла для масляных выключателей, масла для регенерации металлов
Воски для изготовления жевательных резинок и конфет

Изоляционные и пропитывающие воски


Воск для производства бумаги, спичек, картона

Парафины

Медицинский парафин
Консервирующие парафины
Синтетические смазки и их производные
ТЯЖЕЛЫЕ ДИСТИЛЛЯТЫ

Жирные кислоты

Жиры и моющие средства
Смазки

Жирные спирты и сульфаты

Добавки при производстве резины
Бытовые смачивающие и моющие средства

Смазочные масла

Веретенное, турбинное, трансформаторное и компрессорное масла
Бытовые смазочные масла
Масла для холодильников, измерительных приборов, масла для пыленепроницаемых покрытий
Моторные, дизельные, авиационные, железнодорожные масла
Масла для клапанов, задвижек, трансмиссионные масла, типографская краска
Масла для отпуска и закалки металлов
Густые смазки для масленок, выключателей, автомобилей, тросов и другого промышленного оборудования

Вазелин

Косметика
Различные желе и мази
Предотвращение ржавчины, добавки в резину для увеличения ее эластичности, смазки, покрытие и изоляция кабелей и тросов

Остаточные топлива

Консерванты дерева
Масла для металлургии
Котельное топливо для морских и речных судов
Котельное топливо для железнодорожных локомотивов

ОСТАТКИ
ПЕРЕГОНКИ

Асфальт

Кровельный материал, кожезаменитель
Пропитка бумаги, дранки, картона
Гудрон
Основы эмульсий
Брикетирование и асфальтовое дорожное покрытие
Основы красок
Пропитка настила для пола
Покрытие и гидроизоляция кровли Заменители резины
Изоляционные битумы

Кокс

Угольные электроды
Угольные щетки
Топливные кокс
Металлургический кокс

Кислый кокс

Топливо

ГУДРОН

Сульфокислоты

Средства для расщепления жиров Омыляющие реагенты
Эмульгаторы
Деэмульгаторы

Тяжелые мазуты

Топливо нефтеперерабатывающих заводов
ЛИТЕРАТУРА Эрих В.Н. и др. Химия и технология нефти и газа . Л., 1985
Конь М.Я. и др. Нефтеперерабатывающая и нефтехимическая промышленность за рубежом . М., 1986

Нефть представляет собой полезное ископаемое, имеющее консистенцию маслянистой жидкости. Данное горючее вещество в основном имеет черный цвет, но это зависит от района его добычи. Рассматривая нефть с химической точки зрения, можно сказать, что это вещество является сложной смесью углеводородов, в которой также присутствуют такие примеси соединений, как сера, азот и пр. Запах жидкости зависит от содержания в ее составе сернистых соединений и ароматических углеводородов. Нефть использовали в различных целях, но только в прошлом веке начала использоваться прямая перегонка нефти, она стала главным сырьем для изготовления топлива и множества органичных составов.

Состав нефти

Впервые изучением нефти в XIX веке начал заниматься Карл Шорлеммер, который являлся известным немецким химиком. В ходе проведения исследований вещества он обнаружил в нем простейшие углеводороды бутан (С4Н10), гексан (С6Н14) и пентан (С5Н12). Спустя некоторое время российский ученый В. В. Марковников в процессе исследования обнаружил в нефти достаточное количество циклических насыщенных углеводородов — циклопентана (С5Н10) и циклогексана (С6Н12).

На сегодняшний день установлено, что нефть и нефтепродукты соответственно имеют в своем составе более одной тысячи различных веществ, но некоторые из них представлены в малом количестве. Стоит отметить, что в данном веществе содержатся алициклические, насыщенные, ненасыщенные и ароматические углеводороды, имеющие разнообразное строение. В состав нефти также могут входить соединения азота, серы, а также кислородсодержащие соединения (фенолы и кислоты).

В настоящее время технология переработки нефти включает в себя такие процессы: однократная перегонка нефти и ратификация смесей. К ней часто применяются обобщенные наименования.

В процессе разделения нефти путем перегонки и ратификации получают фракции и дистилляты. Они выкипают при определенных температурах и представляют собой довольно сложные смеси. При этом отдельные фракции нефти в некоторых случаях состоят из небольшого количества компонентов, значительно различающихся температурами кипения. По этой причине смеси могут классифицироваться на дискретные, непрерывные и дискретно-непрерывные.

Продукты переработки нефти

К продуктам переработки относится парафин, вазелин, церезин, различные масла и прочие вещества с выраженными водоотталкивающими свойствами. Благодаря данной особенности их применяют для изготовления чистящих средств и кремов.

Так называемая первичная перегонка нефти выполняется благодаря естественному напору подземных вод, которые располагаются под нефтяной залежью. Под давлением нефть будет поднята на поверхность с глубины. Ускорить процедуру можно с применением насосов. Данная процедура позволяет добыть около 25-30% нефти. Для вторичной добычи в нефтяной пласт в основном накачивают воду или же нагнетают диоксид углерода. В результате этих действий на поверхность можно вытеснить еще примерно 35% вещества.

В процессе первичной перегонки нефти и вторичной термической переработки выделяются продукты перегонки нефти, в которых содержится сероводород. В значительной степени это зависит от условий предварительной сепарации нефти, а также эксплуатируемых месторождений. Содержание в составе нефти сероводорода является важным показателем, определяющим множество факторов.

Методы переработки нефти. Фракционная перегонка

Главным методом переработки является фракционная перегонка нефти. Данная процедура подразумевает разделение вещества на фракции, которые отличаются по составу. Дистилляция основана на различии в температурах кипения компонентов нефти.

Фракция представляет собой химическую часть вещества с одинаковыми физическими и химическими свойствами, которая выделяется в процессе перегонки.

Прямая перегонка представляет собой физический метод переработки нефти с применением атмосферно-вакуумной установки.

Принцип работы атмосферно-вакуумной установки

В специальной трубчатой печи происходит нагрев нефти при температуре 350°С. В результате этой процедуры образуется смесь жидкого остатка и паров вещества, которая поступает в ректификационную колонну с теплообменниками.

Далее соблюдается схема перегонки нефти, которая предусматривает осуществление в ректификационной колонне разделения паров нефти на фракции, которые составляют собой различные нефтепродукты. При этом температура их кипения имеет различия в несколько градусов.

Тяжелые фракции вещества поступают в устройство в жидкой фазе. Они отделяются от паров в нижней ее части и в виде мазута отводятся из нее.

Применяются следующие способы перегонки нефти для получения топлива в зависимости от химического состава нефти. В первом случае отбирают авиационные бензины в интервале температур кипения от 40 до 150°С, а также керосин для производства реактивного топлива - от 150 до 300°С. Во втором случае добывают автомобильные бензины при температуре кипения от 40 до 200°С, а дизельные топлива - от 200 до 350°С.

Мазут, который остается после отгона топливных фракций, применяют для образования крекинг-бензинов и масел. Углеводороды, имеющие температуру кипения меньше 40°С, используются в качестве сырья для изготовления определенных синтетических продуктов, добавок к некоторым бензинам, а также как топливо для автомобилей.

Таким образом, вакуумная перегонка нефти позволяет добыть такие дистилляты: бензин, керосин, соляр, лигроин и газойль. Средний выход бензиновых фракций зависит от характеристик добываемого вещества и варьируется от 15 до 20%. Доля остального топлива составляет до 30%. Лигроин обладает большей плотностью, нежели бензин, и применяется для создания высокооктановых бензинов, а также в качестве дизельного топлива для автомобилей. Газойль представляет собой промежуточный продукт между смазочными маслами и керосином. Его образовывает прямая перегонка нефти, после чего его применяют в качестве сырья для каталитического крекинга и топлива для дизелей.

Продукты, получаемые в результате прямой перегонки, отличаются высокой химической стабильностью благодаря отсутствию в своем составе непредельных углеводородов.

Крекинг

Увеличить выход бензиновых фракций можно благодаря применению крекинг-процессов для переработки нефти. Крекинг представляет собой процесс перегонки нефти и нефтепродуктов, который основан на расщеплении молекул сложных углеводородов в условиях высоких давлений и температур. В 1875 году крекинг был впервые предложен А.А. Летним, российским ученым, после чего он был разработан в 1891 году В.Г. Шуховым. Несмотря на это, первая промышленная установка, в которой предусматривалась прямая перегонка, была сооружена в США.

Крекинг делится на следующие виды: термический, каталитический, гидрокрекинг и каталитический риформинг. Термический крекинг применяется для образования бензина, керосина и дизельного топлива. К примеру, при температуре до 500°С и давлении 5 МПа имеющийся в составе дизельного топлива и керосина углеводород цетан разлагается на вещества, которые входят в состав бензина.

Термический крекинг

Бензин, создаваемый путем термического крекинга, обладает невысоким октановым числом и большим содержанием непредельных углеводородов. Из этого можно сделать вывод, что бензин имеет плохую химическую стабильность. Поэтому его будут применять только в качестве компонента для образования товарных бензинов.

На сегодняшний день установки для термического крекинга не сооружаются. Это объясняется тем, что с их помощью получают продукты перегонки нефти, которые в условиях хранения окисляются. В них образовываются смолы, поэтому в вещество вводят специальные присадки, предназначенные для снижения степени осмоления.

Каталитический крекинг

Каталитический крекинг представляет собой процесс перегонки нефти для получения бензина, который основан на расщеплении углеводородов и изменении их структуры, что происходит благодаря катализатору и высоким температурам. Впервые каталитический крекинг был осуществлен в 1919 году в России на заводской установке.

При каталитическом крекинге в качестве сырья применяют фракции соляра и газойля, которые образуются в случае прямой перегонки нефти. Их нагревают до температуры около 500°С при соблюдении давления 0,15 МПа с использованием алюмоселикатного катализатора. Он позволяет ускорить процедуру расщепления молекул сырья и превращает продукты распада в ароматические углеводороды. Прямая перегонка позволяет бензинам иметь большее октановое число, нежели при термическом крекинге. Продукты каталитического крекинга представляют собой обязательные составляющие топлива марки А-72 и А-76.

Гидрокрекинг

Гидрокрекинг представляет собой процедуру переработки, которая распространяется на нефть и нефтепродукты. Он состоит из крекирования и гидрирования сырья. Его выполняют в условиях температуры около 400°С и давления водорода до 20 МПа. При этом используются специальные молибденовые катализаторы. В таком случае октановое число бензиновых фракций будет еще больше. Данный процесс также способен повысить выход светлых нефтепродуктов, таких как реактивное и дизельное топливо, бензин.

Каталитический риформинг

Сырьем для каталитического риформинга служат бензиновые фракции, получаемые при температуре не более 180°С в процессе первичной перегонки нефти. Данную процедуру производят в условиях водосодержащего газа. При этом температура составляет около 500°С, а давление 4 МПа. Также применяется платиновый или молибденовый катализатор.

Гидроформингом называют риформинг с применением молибденового катализатора, а платформингом - процедуру с использованием платинового катализатора. Более простым и безопасным методом является платформинг, поэтому его применяют намного чаще. Для получения высокооктанового компонента автомобильных бензинов используют каталитический риформинг.

Получение смазочных масел

В 1876 году В.И. Рогозиным был сооружен первый в мире завод по изготовлению мазута и масел около Нижнего Новгорода. Рассматривая способ производства, масла можно разделить остаточные и дистиллятные масла. В первом случае мазут нагревают до температуры около 400°С в вакуумной колонне. Из мазута выходит только 50% дистиллятных масел, а остальная часть состоит из гудрона.

Остаточные масла представляют собой очищенные гудроны. Для их образования полугудрон или мазут дополняют сжиженным пропаном, в условиях невысокой температуры около 50°С. Прямая перегонка позволяет производить трансмиссионные и авиационные масла. В смазочных маслах, которые будут получены из мазута, содержатся углеводороды. Кроме них, имеются сернистые соединения, нафтеновые кислоты, а также смолисто-асфальтовые вещества, поэтому необходимо выполнять их очистку.

Нефтеперерабатывающая промышленность России

Нефтеперерабатывающая промышленность представляет собой отрасль нефтяной промышленности России. На данный момент в стране действует более тридцати крупных предприятий, специализирующихся на переработке нефти. Ими добываются большие объемы автомобильного бензина, дизельного топлива и мазута. Преимущественное количество предприятий начало свое существование в последние два десятилетия. При этом некоторые из них занимают лидирующие позиции на рынке.

В большинстве случаев ими применяется фракционная перегонка нефти, которая наиболее актуальна в современных условиях. Предприятиями изготавливаются высококачественные средства, которые пользуются большим спросом не только на отечественном, но и на мировом рынке.

Нефть - сложная субстанция, состоящая из взаиморастворимых органических веществ (углеводородов). При этом у каждого отдельно взятого вещества есть собственный молекулярный вес и температура кипения.

Сырая нефть, в том виде, в каком ее добывают, бесполезна для человека, из нее можно извлечь лишь небольшое количество газа. Чтобы получить нефтепродукты иного рода, нефть неоднократно перегоняют через специальные устройства.

В процессе первой перегонки происходит разделение, входящих в состав нефти веществ на отдельные фракции, что в дальнейшем способствует появлению бензина, дизельного топлива, различных машинных масел.

Установки для первичной переработки нефти

Первичная переработка нефти начинается с ее поступления на установку ЭЛОУ-АВТ. Это далеко не единственная и не последняя установка, необходимая для получения качественного продукта, но от работы именно этой секции зависит эффективность остальных звеньев в технологической цепочке. Установки для первичной переработки нефти являются основой существования всех нефтеперерабатывающих компаний в мире.

Именно в условиях первичной перегонки нефти выделяются все компоненты моторного топлива, смазочные масла, сырье для вторичного процесса переработки и нефтехимии. От работы данного агрегата зависит и количеств, и качество топливных компонентов, смазочных масел, технико-экономические показатели, знание которых необходимо для последующих процессов очистки.

Стандартная установка ЭЛОУ-АВТ состоит из следующих блоков:

  • электрообессоливающая установка (ЭЛОУ);

  • атмосферного;

  • вакуумного;

  • стабилизационного;

  • ректификационного (вторичная перегонка);

  • защелачивающего.

Каждый из блоков отвечает за выделение определенной фракции.

Процесс переработки нефти

Только что добытая нефть разделяется на фракции. Для этого используется разница в температуре кипения отдельных ее компонентов и специальное оборудование - установка.

Сырую нефть переправляют в блок ЭЛОУ, где из нее выделяют соли и воду. Обессоленный продукт подогревают и направляют в блок атмосферной перегонки, в котором нефть частичным образом отбензинивается, подразделяясь на нижние и верхние продукты.

Отбензиненная нефть из нижней части перенаправляется в основную атмосферную колонну, где происходит выделение керосиновой, легкой дизельной и тяжелой дизельной фракций.

Если вакуумный блок не работает, то мазут, становится частью товарно-сырьевой базы. В случае включения вакуумного блока данный продукт подогревается, поступает в вакуумную колону, и из него выделяется легкий вакуумный газойль, тяжелый вакуумный газойль, затемненный продукт, гудрон.

Верхние продукты бензиновой фракции перемешиваются, освобождаются от воды и газов, передаются в стабилизационную камеру. Верхняя часть вещества охлаждается, после чего испаряется, как конденсат, или газ, а нижняя направляется на вторичную перегонку для разделения на более узкие фракции.

Технология переработки нефти

Чтобы понизить затраты на переработку нефти, связанные с потерями легких компонентов и износом аппаратов для переработки вся нефть подвергается предварительной обработке, суть которой заключается в разрушении нефтяных эмульсий механическим, химическим, или электрическим путем.

Каждое предприятие использует свою собственную методику переработки нефти, но общий шаблон остается единым для всех организаций, задействованных в данной области.

Процесс переработки чрезвычайно трудоемок и продолжителен, связано это, прежде всего, с катастрофическим снижением количества легкой (хорошо перерабатываемой) нефти на планете.

Тяжелая нефть подается переработке с трудом, но новые открытие в данной области совершаются ежегодно, поэтому число эффективных способов и методов работы с этим продуктом увеличивается.

Химическая переработка нефти и газа

Образовавшиеся фракции можно преобразовывать друг в друга, для этого достаточно:

  • использовать метод крекинга - крупные углеводороды разбиваются на малые;

  • унифицировать фракции - совершить обратный процесс, объединив маленькие углеводороды в крупные;

  • произвести гидротермальные изменения - переставлять, замещать, объединять части углеводородов для получения нужного результата.

В процессе крекинга происходит разлом больших углеводов на малые. Этому процессу способствуют катализаторы и высокая температура. Для объединения малых углеводородов используется специальный катализатор. По завершению объединения выделяется газообразный водород также служащий для коммерческих целей.

Чтобы произвести другую фракцию или структуру, молекулы в остальных фракциях перестраивают. Делается это в ходе алкилирования - смешивании пропилена и бутилена (низкомолекулярные соединения) с фтористо-водородной кислотой (катализатор). В результате получаются высокооктановые углеводороды, используемые для повышения октанового числа в бензиновых смесях.

Технология первичной переработки нефти

Первичная переработка нефти способствует разделению ее на фракции, без затрагивания химических особенностей отдельных компонентов. Технология данного процесса направлена не на кардинальное изменение структурного строения веществ на разных уровнях, а на изучение их химического состава.

В ходе применения специальных приборов и установок из поступившей на производство нефти выделяются:

  • бензиновые фракции (температура кипения устанавливается индивидуально, в зависимости от технологической цели - получения бензина для машин, самолетов, иного рода техники);

  • керосиновые фракции (керосин применяется в качестве моторного топлива и систем освещения);

  • газойлевые фракции (дизельное топливо);

  • гудрон;

  • мазут.

Разделение на фракции является первым этапом по очистке нефти от различного рода примесей. Чтобы получить действительно качественный продукт, необходима вторичная очистка и глубокая переработка всех фракций.

Глубокая переработка нефти

Глубокая переработка нефти предполагает включение в процесс переработки уже дистиллированных и химически обработанных фракций.

Цель обработки - удаление примесей, содержащих органические соединения, серу, азот, кислород, воду, растворенные металлы и неорганические соли. В ходе переработки фракции разбавляют серной кислотой, удаляемой из них при помощи сероводородных скрубберов, либо водородом.

Переработанные и охлажденные фракции смешивают и получают различные виды топлива. От глубины переработки зависит качество конечного продукта - бензина, дизельного топлива, машинных масел.

Техник, технолог по переработке нефти и газа

Нефтеперерабатывающая отрасль оказывает значительное воздействие на разные сферы жизни общества. Профессия технолог по переработке нефти и газа считается одной из самых престижных и одновременно опасных в мире.

Технологи непосредственно отвечают за процесс очистки, перегонки и дистилляции нефти. Технолог следит за то, чтобы качество продукции соответствовало существующим стандартам. Именно за технологом остается право выбора последовательности совершенных операций при работе с оборудованием, этот специалист отвечает за его настройку и выбор нужного режима.

Технологи постоянно:

  • изучают новые методы;

  • применяют на практике опытные технологии переработки;

  • выявляют причины технических ошибок;

  • ищут способы предотвращения возникших проблем.

Для работы технологом необходимы не только знания в нефтедобывающей отрасли, но и математический склад ума, находчивость, точность и аккуратность.

Новые технологии первичной и последующих переработок нефти на выставке

Использование ЭЛОУ установок во многих странах считается устаревшим способом переработки нефти.

Актуальным становится необходимость постройки специальных печей из огнеупорного кирпича. Внутри каждой такой печи имеются трубы, длиной в несколько километров. Нефть движется по ним со скоростью 2 метра в секунду при температуре до 325 градусов Цельсия.

Конденсация и охлаждение пара производится за счет ректификационных колонн. Конечный продукт поступает в серию резервуаров. Процесс непрерывен.

О современных методах работы с углеводородами можно узнать на выставке «Нефтегаз» .

В ходе работы выставки участники уделяют особое внимание вторичной переработке продукта и использованию таких методов, как:

  • висбрекинг;
  • коксование нефтяных остатков тяжелого типа;
  • риформинг;
  • изомеризация;
  • алкилирование.

Технологии переработки нефти улучшаются с каждым годом. Последние достижения в отрасли можно увидеть на выставке.

Нефть – это полезное ископаемое, представляющее собой нерастворимую в воде маслянистую жидкость, которая может быть как почти бесцветной, так и темно-бурой. Свойства и способы переработки нефти зависят от процентного соотношения преимущественно углеводородов в ее составе, который различается в разных месторождениях.

Так, в Соснинском месторождении (Сибирь) алканы (парафиновая группа) занимают долю в 52 процента, циклоалканы – около 36%, ароматические углеводороды - 12 процентов. А, к примеру, в Ромашкинском месторождении (Татарстан) доля алканов и ароматических углеродов выше – 55 и 18 процентов соответственно, в то время как циклоалканы имеют долю в 25 процентов. Помимо углеводородов, это сырье может включать в себя сернистые, азотные соединения, минеральные примеси и др.

Впервые нефть "переработали" в 1745 году в России

В сыром виде это природное ископаемое не используется. Для получения технически ценных продуктов (растворители, моторное топливо, компоненты для химических производств) осуществляется переработка нефти посредством первичных или вторичных методов. Попытки преобразовать это сырье предпринимались еще в середине восемнадцатого века, когда, помимо свечей и лучин, используемых населением, в лампадах ряда церквей использовали «гарное масло», которое представляло собой смесь растительного масла и очищенной нефти.

Варианты очистки нефти

Очистка часто не включается непосредственно в способы переработки нефти. Это, скорее, предварительный этап, который может состоять из:

Химической очистки, когда на нефть воздействуют олеумом и концентрированной серной кислотой. При этом удаляются ароматические и непредельные углеводороды.

Адсорбционной очистки. Здесь из нефтепродуктов могут удаляться смолы, кислоты за счет обработки горячим воздухом или пропуском нефти через адсорбент.

Каталитической очистки – мягкой гидрогенизации для удаления азотистых и серных соединений.

Физико-химической очистки. В этом случае посредством растворителей избирательно выделяются лишние составляющие. Например, полярный растворитель фенол используется для удаления азотистых и сернистых соединений, а неполярные растворители – бутан и пропан - выделяют гудроны, ароматические углеводороды и пр.

Без химических изменений...

Переработка нефти посредством первичных процессов не предполагает химических превращений исходного сырья. Здесь полезное ископаемое просто разделяется на составляющие компоненты. Первое устройство по перегонке нефти было придумано в 1823 году, в Российской империи. Братья Дубинины догадались поставить котел в печь с нагревом, откуда шла труба через бочку с холодной водой в пустую емкость. В печном котле нефть нагревалась, проходила через «холодильник» и осаждалась.

Современные способы подготовки сырья

Сегодня на нефтеперерабатывающих комплексах технология переработки нефти начинается с дополнительной очистки, в ходе которой продукт обезвоживается на устройствах «ЭЛОУ» (электрообессоливающие установки), освобождается от механических примесей и углеводов легкого типа (С1 – С4). Потом сырье может поступать на атмосферную перегонку или вакуумную дистилляцию. В первом случае заводское оборудование по принципу действия напоминает то, что использовалось еще в 1823 году.

Только по-другому выглядит сама установка переработки нефти. На предприятии стоят печи, по размерам напоминающие дома без окон, из самого лучшего огнеупорного кирпича. Внутри них располагаются многокилометровые трубы, в которых нефть движется с большой скоростью (2 метра в сек.) и подогревается до 300-325 С пламенем из большой форсунки (при более высоких температурах углеводороды просто разлагаются). Трубу для конденсации и охлаждения паров в наши дни заменяют ректификационные колонны (могут быть до 40 метров в высоту), где пары разделяются и конденсируются, а для приема полученных продуктов выстраиваются целые городки из разных резервуаров.

Что такое материальный баланс?

Переработка нефти в России дает разные материальные балансы при атмосферной перегонке сырья из того или иного месторождения. Это означает, что на выходе могут получаться разные пропорции для разных фракций – бензиновой, керосиновой, дизельной, мазута, сопутствующего газа.

К примеру, для западно-сибирской нефти выход газа и потери составляют по одному проценту соответственно, бензиновые фракции (выделяются при температурах от около 62 до 180 С) занимают долю около 19%, керосин – около 9,5%, дизельная фракция – 19 %, мазут – почти 50 процентов (выделяется при температурах от 240 до 350 градусов). Полученные материалы практически всегда подвергаются дополнительной обработке, так как они не соответствуют эксплуатационным требованиям для тех же моторов машин.

Производство с меньшим числом отходов

Вакуумная переработка нефти базируется на принципе закипания веществ при более низкой температуре при снижении давления. Например, некоторые углеводороды в нефти кипят только при 450 С (атмосферное давление), но их можно заставить кипеть и при 325 С, если давление понизить. Вакуумная обработка сырья проводится в роторных вакуумных испарителях, которые увеличивают скорость перегонки и дают возможность получить из мазута церезины, парафины, топливо, масла, а тяжелый остаток (гудрон) применить далее для производства битума. Вакуумная дистилляция, по сравнению с атмосферной переработкой, дает меньше отходов.

Вторичная переработка позволяет получить качественные бензины

Вторичный процесс переработки нефти был придуман для того, чтобы из того же исходного сырья получить больше моторного топлива за счет воздействия на молекулы нефтяных углеводородов, которые обретают более подходящие для окисления формулы. Вторичная переработка включает в себя разные виды так называемого «крекинга», в том числе гидрокрекинг, термический и каталитический варианты. Этот процесс также изначально был изобретен в России, в 1891 году, инженером В. Шуховым. Он представляет собой расщепление углеводородов до форм с меньшим числом атомов углерода в одной молекуле.

Переработка нефти и газа при 600 градусах Цельсия

Принцип работы крекинг-заводов приблизительно такой же, как и установок атмосферного давления вакуумных производств. Но здесь обработка сырья, которое чаще всего представлено мазутом, производится при температурах, близких к 600 С. Под таким воздействием углеводороды, составляющие мазутную массу, распадаются на более мелкие, из которых и состоит тот же керосин или бензин. Термический крекинг базируется на обработке высокими температурами и дает бензин с большим количеством примесей, каталитический – также на температурной обработке, но с добавлением катализаторов (к примеру, специальной глиняной пыли), что позволяет получить больше бензина хорошего качества.

Гидрокрекинг: основные типы

Добыча и переработка нефти сегодня может включать различные виды гидрокрекинга, который представляет собой комбинацию процессов гидроочистки, расщепления крупных молекул углеводородов на более мелкие и насыщения непредельных углеводородов водородом. Гидрокрекинг бывает легким (давление 5 МПа, температура около 400 С, используется один реактор, получается, преимущественно, дизельное топливо и материал для каталитического крекинга) и жестким (давление 10 МПа, температура около 400 С, реакторов несколько, получаются дизельные, бензиновые и керосиновые фракции). Каталитический гидрокрекинг позволяет изготавливать ряд масел с высоким коэффициентов вязкости и малым содержанием углеводородов ароматического и сернистого типа.

Вторичная переработка нефти, кроме того, может использовать следующие технологические процессы:

Висбрекинг. В этом случае при температурах до 500 С и давлениях в пределах от половины до трех МПа из сырья за счет расщепления парафинов и нафтенов получают вторичные асфальтены, углеводородные газы, бензин.

Коксование нефтяных остатков тяжелого типа – это глубокая переработка нефти, когда сырье при температурах, близких к 500 С под давлением 0,65 МПа обрабатывают для получения газойлевых компонентов и нефтяного кокса. Стадии процесса заканчиваются получением «коксового пирога», которому предшествуют (в обратном порядке) уплотнение, поликонденсация, ароматизация, циклизация, дегидрирование и крекинг. Кроме того, продукт подлежит также высушиванию и прокаливанию.

Риформинг. Данный способ обработки нефтепродуктов был придуман в России в 1911 году, инженером Н. Зелинским. Сегодня риформинг каталитического плана используется для того, чтобы из лигроиновых и бензиновых фракций получать высококачественные ароматические углеводороды и бензины, а также водородосодержащий газ для последующей переработки в гидрокрекинге.

Изомеризация. Переработка нефти и газа в данном случае предполагает получение из химического соединения изомера за счет изменений в углеродном скелете вещества. Так из низкооктановых компонентов нефти выделяют высокооктановые компоненты для получения товарных бензинов.

Алкилирование. Этот процесс строится на встраивании алкильных замещающих в молекулу органического плана. Таким образом из углеводородных газов непредельного характера получают составляющие для высокооктановых бензинов.

Стремление к евростандартам

Технология переработки нефти и газа на НПЗ постоянно совершенствуется. Так, на отечественных предприятиях отмечено увеличение эффективности переработки сырья по параметрам: глубина переработки, увеличение отбора светлых нефтепродуктов, снижение безвозвратных потерь и др. В планы заводов на 10-20-е годы двадцать первого века входит дальнейшее увеличение глубины переработки (до 88 процентов), повышение качества выпускаемых продуктов до евростандартов, снижение техногенного воздействия на окружающую среду.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то