Защита от перегрузки регулируемых стабилизаторов на транзисторах. Защита стабилизатора тока от перегрузки. Простейший стабилизированный блок питания

Стабилизатор тока с защитой от КЗ

Защита стабилизатора тока от перегрузки

Стабилизаторы тока широко используются в различных устройствах. Их схемы бывают простыми и не очень. Но в любом случае будет лучше, если он будет иметь защиту от перегрузки. Проблема, которую мы рассмотрим, заключается в следующем, есть у нас стабилизатор напряжения с ограничение тока нагрузки. То есть такому стабилизатору не страшны короткие замыкания на его выходе.

Но в режиме КЗ на регулирующем транзисторе такого стабилизатора будет выделяться большая мощность, это потребует применение соответствующего теплоотвода, что повлечет за собой увеличения размеров устройства, ну и его цены. А иначе – тепловой пробой структуры мощного транзистора.

Для примера возьмем простую схему стабилизатора тока на микросхеме, показанную на рисунке 1.

Все в общих чертах. Ток стабилизации, в соответствии с формулой 1, равен 1А. Допустим, нормальное сопротивление нагрузки 6 Ом. Тогда при токе в 1А на микросхеме упадет напряжение, равное: U = IxR — IxRн = 12-1,25-6 = 4,75В. Соответственно на микросхеме выделится мощность P = UxI = 4,75Вт. Если замкнуть выход стабилизатора тока, то на микросхеме уже будет падать напряжение 10,75В и соответственно мощность, выделяющаяся на микросхеме будет равна 10,75Вт. Вот на эту мощность и надо рассчитывать радиатор, тогда надежность вашего устройства будет на высоте. Но, что делать, если нет возможности установить радиатор бо’льших размеров? Правильно! Надо еще ограничить и мощность, выделяемую на микросхеме. Можно перед данной схемой поставить следящий стабилизатор, который бы в случае КЗ брал на себя часть выделяющейся тепловой мощности, но это сложновато. Лучше мы сделаем полное отключение стабилизатора при КЗ на его входе. Зная, что мощность равна произведению на ток, а ток мы выставляем сами и он стабилизирован, то мы будем следить за падение напряжения на регуляторе тока.

Схема регулируемого стабилизатора тока взята из статьи . Подробно о работе данного регулируемого стабилизатора тока можно прочитать в статье .

Работа схемы защиты от превышения мощности

Для обеспечения защиты стабилизатора тока вводим в схему всего пять деталей. Транзистор VT1, выполняющий роль ключа и полностью отключающий стабилизатор во время режима КЗ. Здесь применен MOSFET транзистор с каналом P. При небольших токах, порядка одного, двух ампер, подойдет IRFR5505

При больших токах лучше применить транзистор с большим рабочим током стока и меньшим сопротивлением открытого канала. Например — IRF4905

Тиристорный оптрон, можно отечественный – АОУ103 с любой буквой, можно подобрать импортный, например — TLP747GF

Стабилитрон, любой маломощный, дочитаете статью до конца и сами себе, если потребуется, выберете нужный. R1 – это резистор, через который на затвор ключа, подается отрицательное открывающее напряжение. R2 – резистор, ограничивающий ток светодиода тиристорного оптрона. Да, если входное напряжение будет больше 20В, то параллельно тиристору оптрона необходимо поставить еще один стабилитрон на 12В, который будет защищать переход затвор – исток ключевого транзистора. Так как у большинства транзисторов MOSFET максимально допустимое напряжение этого перехода 20В.

Для примера возьмем случай зарядки двенадцативольтового аккумулятора стабильным током 3А. При подаче напряжения питания на схему транзистор VT1 будет открыт, так как на его затвор поступает отрицательное напряжение и схема работает в нормальном режиме. Падение напряжения на ключе учитывать не будем из-за его малой величины. При таких условиях на самом стабилизаторе тока будет падать мощность Р = (20 — 12)∙I= 8 ∙ 3 = 24Вт. При КЗ мощность увеличится до 60Вт, если без защиты. Многовато, и для транзистора VT2 не безопасно, поэтому после 30Вт мы отключим стабилизатор, поставив в цепь защиты стабилитрон с напряжением стабилизации 10В. Таким образом, мы получаем схему с защитой не только от КЗ, но и от превышения допустимой мощности рассеяния на стабилизаторе тока. Допустим, по каким либо причинам, совершенно нам не нужным, начало падать сопротивление нагрузки. Это вызовет увеличение падения напряжения на стабилизаторе и соответственно мощности рассеяния на нем. Но как только напряжение между входом и выходом превысит 10 вольт, «пробьется» стабилитрон VD1, через светодиод оптрона U1 потечет ток. Излучение светодиода откроет фототиристор, который зашунтирует переход затвор – исток ключевого транзистора. Тот в сою очередь закроется и отключит схему стабилизатора. Возвратить схему в рабочее состояние можно будет, или отключением питания и повторным подключением, или кратковременным закорачиванием фототиристора, например кнопкой. Таким образом, отслеживая напряжение между входом и выходом стабилизатора тока, вы можете сами с помощью стабилитронов на разные напряжения стабилизации, установить нужный вам порог ограничения по мощности.

Эта схема применима практически ко всем стабилизаторам, хоть по току, хоть по напряжению. Ее можно встроить уже в готовый стабилизатор, не имеющий защиты от КЗ.
Успехов и удачи. К.В.Ю.

ИСТОЧНИКИ ПИТАНИЯ

УПРОЩЕННЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С ДВОЙНОЙ ЗАЩИТОЙ ОТ ПЕРЕГРУЗКИ

Стабилизатор напряжения с двойной защитой от КЗ в нагрузке, описанным в , вызвал немалый интерес радиолюбителей Однако, суля по откликам, ему присущ существенный недостаток: движок

регулятора выходною напряжения необходимо установить в нулевое положение после устранения перегрузки но току до нажатия кнопки SB! «Пуск* В связи с этим и появились предложения по устранению этого недостатка . На вход стабилизатора налают от выпрямителя ностоднное напряжение 40...44 В. Выходное стабилизированное напряжение от 0,2 до 28 В устанавливают резистором R2 и контролируют вольтметром PU1. Максимальный ток нагрузки - 2 А.

Внешний вид лабораторного блока питания, в котором установлен описываемый стабилизатор напряжения, показан в заголовке статьи. Детали стабилизатора смонтированы на плате из фольги- роваиного стеклотекстолита

(рис. 2) и на лицевой панели корпуса блока питания. Регулирующий транзистор VT2 установ¬

лен на теплоотводе - задней стенке прибора.

Транзистор КТ608 (с буквенным индексом А или Б) можно заменить на КТ815 (Б, В, Г),

KT8I7 (В. Г). КТ801 (А Б), а КТ803А - на КТ802А. КТ805 (А. Б), КТ808А, КТ819 (В. Г). Тринистор КУ202К заменим на КУ201В-КУ201Л, К У202 В- КУ202Н, стабилитрон Д816Б - на Д816В или КС533А (можно включить последовательно дна стабилитрона Д815 Д816 на суммарное напряжение стабилн зацин 28 ...36 В) Вместо диода Д220А (VD2) подойдут Д219, Д220,

Д223, КД102, КД ЮЗ с любыми буквенными индексами, а вместо диода КД105Б (VD3) КД106А или любой другой кремниевый с прямым током до 300 мА и обратным напряжением не менее 50 В.

Переменный резистор R2 (6.8... 15 кОм) любого типа с характеристикой А. Реле К1 - РЭС9 (паспорт РС4.524 200) или другое с двумя группами контактов на переключение, срабатывающие при напряжении не более 30 В.

Резистор R4 - несколько витков константа ново о, пихромового или маигининового провода, намотанного на корпус резистора МЛТ-1. Ею сопротивление определяется значением тока выбранного предела срабатывания, что, в свою очередь, зависит от напряжения на управляющем электроде установленного тринистора, при котором этот ключ стабилизатора открывается Так. например, если за максимальный ток срабатывания системы принять 2 А, а трннн- стор открывается при напряжении на управляющем электроде около 1 В, сопротивление резистора R4 должно быть (по закону Ома) близко к 0,5 Ома.

Более точно сопротивление резистора подгоняют под выбранный предел срабатывания защиты а таком порядке. К выходу стабилизатора подключают соединенные последовательно амперметр и проволочный переменный резистор сопротивлением 25-30 Ом На вход стабилизатора подают соответствующее напряжение от выпрямителя и резистором R2 устанивливают на выходе напряженке

10... 15 В. Затем переменным резистором, выполняющим функцию эквивалента naiрузки установли-



Предлагаем заказать в нашем интернет магазине популярные стабилизирующие устройства с энергосберегающим режимом управления и полностью автоматической системой устранения внештатных ситуаций в электрической сети. Главными предусмотренными у данных марок Энергия и Вольтрон задачами является: безотказная защита от короткого замыкания, высокоскоростное выравнивание повышенного и пониженного электропитания в бытовых, а также промышленных потребительских сетях и решение проблем связанных с непредсказуемыми кратковременными перегрузками. Официальный производитель российского рекомендуемого оборудования для электросети 220В, 380В - компания «ЭТК Энергия». Точность стабилизации у некоторых бытовых линеек составляет всего ±3% и ±5%, благодаря чему они идеально будут работать даже с медицинскими высокоточными приборами. Купить стабилизатор напряжения с защитой от КЗ можно в Москве, Санкт-Петербурге и области. Многие предлагаемые к покупке отечественные однофазные и трёхфазные марки Энергия и Voltron отлично подходят для простой и высокочувствительной современной электротехники ещё и потому, что располагают плавной автоматической регулировкой опасных на входе скачков и просадок. Лучшими электроприборами российского производства на данный момент времени считаются новые усовершенствованные модели с чистой синусоидальной формой сигнала, а именно: Энергия Гибрид, Classic и Ultra. Также стоит отметить, что в процессе функционирования этих линеек совершенно отсутствует мерцание лампочек. Универсальный корпус автоматических аппаратов Энергия Классик, Ультра, Гибрид U и Voltron РСН предусматривает кроме напольной стандартной эксплуатации и компактную настенную установку.

Однофазные и трёхфазные стабилизаторы напряжения с защитой от КЗ широко представленные у нас на сайте на сегодня пользуются огромным покупательским спросом для высокоэффективной и долговечной защиты различной отдельной маломощной техники и всего дома, квартиры, офиса, загородной дачи, учебных, развлекательных и медицинских учреждений, промышленных и других объектов, где часто возникают проблемы в 1-фазной или 3-фазной сети. Модельный ряд состоит из аппаратов среднего и премиум класса с максимальными предусмотренными производителем мощностями на 1, 2, 3, 5, 8, 10, 15, 20 и 30 кВт (кВа). Поэтому у нас вы сможете выбрать подобное электрооборудование даже для безопасности самого большого коттеджа или производственного помещения с большим количеством используемых потребителей. Купить стабилизатор напряжения с защитой от КЗ в Москве, СПБ вы можете у нас по доступной цене. По типу выравнивания некачественного электроснабжения в бытовой электросети имеются релейные, электронные (тиристорные) и электромеханические российские сетевые приборы. Почти все серии обладают высокими техническими характеристиками и дополнительно оснащены системой самодиагностики для тщательного отслеживания состояния электроснабжения на входе и выходе. Для непрерывного применения в условиях отрицательных внешних температур (до -20, -30 градусов Цельсия) окружающей среды есть специальные морозостойкие модели. Следить за важными параметрами в сети позволяет цифровой дисплей. У нас вы сможете подобрать качественное и очень надёжное малошумное и абсолютно бесшумное сетевое оборудование с многоуровневой защитой от аварийных сбоев. Гарантия 1-3 года. Заявленный производителем срок назначенной работы на большинство наших сертифицированных электроприборов составляет не менее 10 лет. Все устройства могут использоваться круглосуточно.

Собственно стабилизатор состоит из источника опорного напряжения (лампа HL1 и стабилитроны VD2, VD3), усилителя постоянного тока (транзисторы VT3, VT4) и регулирующего транзистора (VT5). В источнике опорного напряжения протекающий через стабилитроны ток стабилизируется лампой накаливания, что улучшает коэффициент стабилизации, а значит, снижает пульсации выпрямленного напряжения. Лампа одновременно служит индикатором перегрузки, вспыхивающим при срабатывании электронной защиты. Для увеличения выходного тока до 3...5 А применен мощный транзистор VT5.

Электронная защита выполнена на транзисторе VT1 и тринисторе VS1. При достижении максимально допустимого тока нагрузки увеличивается падение напряжения на резисторе R3, транзистор VT1 открывается, и положительный импульс напряжения через диод VD1 открывает тринистор. Он шунтирует источник опорного напряжения и закрывает транзисторы VT3—VT5. После устранения перегрузки и установки регулятора выходного напряжения (переменный резистор R4) в нижнее по схеме положение устройство возвращается в исходное состояние кратковременным нажатием кнопки SB1.

Применение дополнительной электромагнитной защиты необходимо по следующим соображениям. В определенной ситуации перегрузка *или короткое замыкание в цепи нагрузки может наступить тогда, когда стабилизатор уже работал продолжительное время при токе, близком к максимальному.

В этом случае транзистор VT5 разогрет и при срабатывании электронной защиты не закрывается полностью. Через транзистор продолжает протекать большой ток, способный перегреть транзистор и вывести его из строя.
Вот здесь и пригодится электромагнитная защита, выполненная на транзисторе VT2 и реле К1. При открывании тринистора VS1 база транзистора VT2 подключается через резистор R5 к плюсовому проводу стабилизатора. Транзистор открывается, срабатывает реле К1 и подключает контактами К1.1 базу транзистора VT5 к плюсовому проводу.


Выходное напряжение стабилизатора устанавливают переменным резистором R4 от 0,2 до 15 В, а максимальный ток нагрузки, при котором срабатывает защита,— под-строечным резистором R2. Использование для транзистора VT5 радиатора 1201-Б из наборов «Старт» позволяет при выходном напряжении 15 В пропускать через транзистор ток 1 А в длительном режиме или 2...3 А в течение 30...40 мин (в зависимости от условий конвекции воздуха у радиатора и температуры транзистора).

Для увеличения тока нагрузки до 5 А потребуется радиатор с большей площадью поверхности или принудительное охлаждение транзистора (небольшим вентилятором).

Указанный на схеме транзистор КТ315В можно заменить транзисторами КТ3157, КТ342А, КТ373АГ КТ375А; КТ361Е — транзисторами КТ361Г, КТ361К, КТ203Б, КТ104Г; П215 — П213—П217 с любым буквенным индексом, КТ814Б, КТ816Б; П210Б—П210В, ГТ701А. Вместо тринистора КУ101Б подойдут КУ101Г, КУ101Е, КУ101И, КУ201В, КУ201Г (мощность двух последних тринисто-ров намного выше требуемой для данной конструкции). Вместо диодов Д223 подойдут Д219А, Д220, КД509А, КД522Б, а вместо стабилитронов Д814А—Д808. Подстроеч-ный резистор R2— проволочный, типа ППЗ; постоянный резистор R3— тоже проволочный, изготовленный из отрезка провода ПЭВ-1 0,59 длиной 156 см, намотанного на фарфоровом каркасе диаметром 17 и высотой 40 мм (подойдет корпус резистора ПЭВ-10); переменный резистор R4 — любого типа с линейной функциональной характеристикой (А); остальные резисторы — МЛТ указанной на схеме или большей мощности. Лампа HL1—КМ 24-35 (на напряжение 24 В и ток 35 мА), реле — РЭС9, паспорт РС4.524.200 (обе группы контактов соединены параллельно).

Большая часть указанных деталей смонтирована на печатной плате (рис. С-1 2) из фольгированного стеклотекстолита. Вместе с остальными деталями и выпрямителем плату размещают в корпусе, на передней стенке которого устанавливают ручки управления и выходные зажимы для подключения нагрузки.

Налаживание устройства начинают с электронной защиты. Левый по схеме вывод резистора R5 отключают от деталей, а движок резистора R2 устанавливают в верхнее положение. Подключают к выходу стабилизатора нагрузку, потребляющую ток 3,5...4 А при напряжении 6...10 В. Если электронная защита сразу же срабатывает, перемещают движок резистора R2 вниз по схеме. Более точным подбором сопротивления резистора R3 (отматыванием или доматыванием провода) добиваются, чтобы электронная защита срабатывала примерно при среднем положении движка резистора R2.

Вы наверняка обратили внимание на одно неудобство при эксплуатации стабилизатора — после устранения КЗ или перегрузки приходится устанавливать движок регулятора выходного напряжения R4 в нулевое положение, после чего нажимать кнопку SB1 и вновь ставить выходное напряжение переменным резистором R4.

Избавиться от этого неудобства нетрудно, если применить вместо одинарной кнопки SB1 сдвоенную, но с контактами на размыкание. Одну группу контактов следует включить в разрыв цепи коллектора транзистора VT1, а другую — в разрыв верхнего по схеме вывода лампы HL1. Причем при нажатии кнопки первая группа должна срабатывать несколько позже второй. Если используется кнопочный выключатель типа КМ2-1, в нем для указанных целей изгибают пинцетом пружинящую пластину вверх примерно на 20° над выключателем первой группы контактов.

В данной статье будет рассмотрена схема простого, но эффективного стабилизатора напряжения с защитой от короткого замыкания на выходе. Основой стабилизатора служит интегральный стабилизатор К157ХП2, в качестве управляющего транзистора используется n-p-n транзистор КТ808А. Схема стабилизатора представлена на рисунке 1.

Для начала рассмотрим внутреннюю структуру микросхемы К157ХП2. Ее схема представлена на рисунке 2.



Помимо собственно самого стабилизатора микросхема имеет еще две отдельных транзисторных структуры, это транзисторы VT29 и VT30. Их, в параллельном включении, мы и будем использовать, как предварительный каскад усиления для управляющего транзистора VT1 КТ808А. Микросхема имеет функцию плавного включения стабилизатора. Время нарастания выходного напряжения зависит от емкости конденсатора С5 рисунок 1, подключенного к выводу 8 DA1. Наличие плавного нарастания напряжения позволяет намного уменьшить амплитуду импульса тока заряда при работе стабилизатора на емкостную нагрузку. Микросхема имеет внутреннюю защиту от превышения тока нагрузки. Датчиком тока в этом случае является резистор R12. Порог ограничения равен 200мА. И еще одна очень полезная опция у данной микросхемы, это – Вкл\Выкл. Если на вывод 9 DA1 подать напряжение более двух вольт, то стабилизатор включится, если убрать напряжение, то стабилизатор выключится практически полностью. Выходное напряжение закрытого стабилизатора составляет лишь несколько десятков милливольт.

Еще один плюс, это тепловая защита. Защита кристалла от перегрева осуществляется транзистором VT18, на базу которого подана часть образцового напряжения, недостаточная для его открывания при нормальной температуре. При повышении температуры кристалла до +165...180°С транзистор VT18 открывается и шунтирует базовую цепь транзистора VT22.

Работа схемы стабилизатора

При подаче напряжения на схему стабилизатора, это напряжение попадает на коллектора транзисторов VT1, рисунок 1, VT29 и VT30 выводы 12 и 3 микросхемы DA1. Так же это напряжение подается на конденсатор С4, который находится в цепи запуска схемы стабилизатора. В момент подачи напряжения на схему ток заряда этого конденсатора включает стабилизатор микросхемы. На выходе стабилизатора микросхемы, вывод 11, появляется открывающее напряжение, которое через ограничивающий резистор R3 подается на базы транзисторов VT29 и VT30 микросхемы DA1. С эмиттеров, вывод 1 DA1, этих транзисторов сигнал подается на базу мощного транзистора VT1 рисунок 1. Напряжение появится на выходе полной схемы стабилизатора. Часть этого напряжения через резистор R3, величиной более 2В поступит на вывод 9 DA1- On/Off. Теперь уже стабилизатор во включенном состоянии будет удерживаться не током заряда конденсатора С4, а током протекающим через резистор обратной связи R3. Исходя из выше сказанного, становиться понятно, как работает схемы защиты стабилизатора от режима короткого замыкания. При замыкании выходных клемм стабилизатора, верхний вывод резистора R3 оказывается замкнутым на общий провод устройства, напряжение на выводе 9 DA1 пропадает, стабилизатор выключается. Вернуть схему в рабочее состояние можно будет отключением и повторным включением стабилизатора. Можно поставить кнопку «Перезапуск» параллельно конденсатору запуска С4.

Регулировка выходного напряжения осуществляется при помощи переменного резистора R4. Минимальное выходное напряжение стабилизатора равно напряжению внутреннего ИОН и соответствует 1,3 В. Максимальное напряжение зависит естественно от величины входного, но не более 40 вольт, падения напряжения на схеме стабилизатора и величины резистора R5. Если вам не нужно ограничение выходного напряжения, то этот резистор из схемы можно исключить.

Детали и конструкция

В качестве мощного управляющего транзистора VT1 использован транзистор n-p-n структуры КТ808А

Его можно заменить любыми подходящими транзисторами КТ819, КТ827, КТ829, импортными транзисторами из серии ТИР и т.д. и т.п. Конденсатор фильтра С3 лучше использовать танталовый, типа ЭТО, но за неимением можно поставить и обычный электролит. Конденсатор С1 любой. Он стоит параллельно входным клеммам схемы, но физически он должен находиться непосредственно у микросхемы DA1. Как и конденсатор С2, по схеме он стоит параллельно выходу, но так же должен находиться рядом с микросхемой. Усилитель ошибки данной микросхемы имеет большой коэффициент усиления, чем больше Кус, тем больше склонность к возбуждению. Поэтому, как вы выполните монтаж стабилизатора, зависит устойчивость его работы. В конечном счете, от этого зависит надежность работы тех устройств, которые будут питаться от этого стабилизатора.

Внешний вид экспериментального модуля стабилизатора показан на фото 1.

На фото показана экспериментальная плата, но вы, когда будете делать свою, то обязательно придерживайтесь показанной компоновки. Резистор R1 можно расположить на плате, а можно припаять прямо к выводам транзистора VT1. Что бы уменьшить выходное сопротивление стабилизатора, верхний и нижний выводы регулирующей цепочки R4 и R5 необходимо подключать к выходным клемма устройства, чтобы исключить влияние падения напряжения на монтажных проводах, да и о сечении проводов для соответствующего тока нагрузки не забывайте.

Успехов, удачи. К.В.Ю.

Скачать статью.


  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то