Алкены способны вступать в реакции. Химические свойства алкенов

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены) . Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены ), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов - алканов.

Строение алкенов

Ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n. Свое второе название - олефины - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел.
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к. она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Строение этилена

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена ): С 2 Н 4 - этен, С 3 Н 6 - пропен, С 4 Н 8 - бутен, С 5 Н 10 - пентен, С 6 Н 12 - гексен, С 7 Н 14 - гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, - это бутен:


Особым видом структурной изомерии является изомерия положения двойной связи:

Алкены изомерны циклоалканам (межклассовая изомерия), например:



Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис- и транс- изомерии .


Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен , обозначающий принадлежность соединения к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов - газы; вещества состава С5Н10 — С16Н32 - жидкости; высшие алкены - твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения . Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения .
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов - платины, палладия, никеля:

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов) . Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода) .

Эта реакция подчиняется
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.


4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты .

Эта реакция протекает также в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа - к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободнорадикальному механизму.
Реакции окисления.
1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:




Алке́ны (олефины , этиленовые углеводороды C n H 2n

Гомологический ряд.

этен (этилен)

Простейшим алкеном является этилен (C 2 H 4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил» . Тривиальные названия: CH 2 =CH- «винил» , CH 2 =CH-CH 2 - «аллил» .

Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°.

Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная.

Физические свойства

    Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.

    При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с пентена C 5 H 10 до гексадецена C 17 H 34 включительно - жидкости, а начиная с октадецена C 18 H 36 - твёрдые вещества. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Дегидрирование алканов

Это один из промышленных способов получения алкенов

Гидрирование алкинов

Частичное гидрирование алкинов требует специальных условий и наличие катализатора

Двойная связь является сочетания сигма- и пи-связей. Сигма- связь возникает при осевом перекрывании sp2 – орбиталей, а пи-связь при боковом перекрывании

Правило Зайцева:

Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

13. Алкены. Строение. sp 2 гибридизация, параметры кратной связи. Реакции электрофильного присоединения галогенов, галогеноводородов, хлорноватистой кислоты. Гидратация алкенов. Правило Морковникова. Механизмы реакций.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Одна s- и 2 p-орбитали смешиваются и образуются 2 равноценные sp2-гибридные орбитали, расположенные в одной плоскости под углом 120.

Если связь образуется более чем одной парой электронов, то она называется кратной .

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Реакции электрофильного присоединения

В данных реакциях атакующей частицей является электрофил.

Галогенирование:

Гидрогалогенирование

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова

Марковникова правило

    Присоединение хлорноватистой кислоты с образованием хлоргидринов:

Гидратация

Реакция присоединения воды к алкенам протекает в присутствии серной кислоты :

Карбкатион - частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь.

14. Этиленовые углеводороды. Химические свойства: реакции с окислителями. Каталитическое окисление, реакция с надкислотами, реакция окисления до гликолей, с разрывом связи углерод-углерод, озонирование. Вакер-процесс. Реакции замещения.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Окисление

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.

При сжигании на воздухе олефины дают углекислый газ и воду.

H 2 C=CH 2 + 3O 2 => 2CO 2 + 2H 2 O

C n H 2n + 3n/O 2 => nCO 2 + nH 2 O – общая формула

Каталитическое окисление

В присутствии солей палладия этилен окисляется до ацетальдегида. Аналогично образуется ацетон из пропена.

    При действии на алкены сильных окислителей (KMnO 4 или K 2 Cr 2 O 7 в среде Н 2 SO 4) при нагревании происходит разрыв двойной связи:

При окислении алкенов разбавленным раствором марганцовки образуются двухатомные спирты – гликоли (реакция Е.Е.Вагнера). Реакция протекает на холоде.

Ациклические и циклические алкены при взаимодействии с надкислотами RCOOOH в неполярной, среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Озонирование алкенов.

при взаимодействии алкенов с озоном образуются перекисные соединения, которые называются озо-нидами. Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи

Алкены не вступают в реакции замещения.

Вакер-процесс -процесс получения ацетальдегида прямым окислением этилена.

Вакер-процесс основан на реакции окисления этилена дихлоридом палладия:

CH 2 =CH 2 + PdCl 2 + H 2 O = CH 3 CHO + Pd + 2HCl

15. Алкены: химические свойства. Гидрирование. Правило Лебедева. Изомеризация и олигомеризация алкенов. Радикальная и ионная полимеризация. Понятие полимер, олигомер, мономер, элементарное звено, степень полимеризации. Теломеризация и сополимеризация.

Гидрирование

Гидрирование алкенов непосредственно водородом происходит только в присутствии катализатора. Катализаторами гидрирования служат платина,палладий, никель

Гидрирование можно проводить и в жидкой фазе с гомогенными катализаторами

Реакции изомеризации

При нагревании возможна изомеризация молекул алкенов, которая

может привести как к перемещению двойной связи, так и к изменению скелета

углеводорода.

CH2=CH-CH2-CH3 CH3-CH=CH-CH3

Реакции полимеризации

Это разновидность реакции присоединения. Полимеризация - это реакция последовательного соединения одинаковых молекул в большие по размеру молекулы, без выделения какого-либо низкомолекулярного продукта. При полимеризации атом водорода присоединяется к наиболее гидрогенизированному атому углерода, находящемуся у двойной связи, а к другому атому углерода присоединяется остальная часть молекулы.

CH2=CH2 + CH2=CH2 + ... -CH2-CH2-CH2-CH2- ...

или n CH2=CH2 (-CH2-CH2-)n (полиэтилен)

Вещество, молекулы которого вступают в реакцию полимеризации, называются мономером . Молекула мономера обязательно должна иметь хотя бы одну двойную связь. Образующиеся полимеры состоят из большого количества повторяющихся цепочек, имеющих одинаковое строение (элементарных звеньев). Число, показывающее, сколько раз в полимере повторяется структурное (элементарное) звено, называется степенью полимеризации (n).

В зависимости от вида промежуточных частиц, образующихся при полимеризации, различают 3 механизма полимеризации: а) радикальный; б)катионный; в) анионный.

По первому методу получают полиэтилен высокого давления:

Катализатором реакции выступают пероксиды.

Второй и третий методы предполагает использование в качестве катализаторов кислот (катионная полимеризация), металлорганических соединений.

В химии олигомер ) - молекула в виде цепочки изнебольшого числа одинаковых составных звеньев.

Теломеризация

Теломеризация – олигомеризация алкенов в присутствии веществ – передатчиков цепи (телогенов). В результате реакции образуется смесь олигомеров (теломеров), концевые группы которых представляют собой части телогена. Например, в реакции CCl 4 с этиленом телогеном является CCl 4 .

CCl 4 + nCH 2 =CH 2 => Cl(CH 2 CH 2) n CCl 3

Инициирование этих реакций может осуществляться радикальными инициаторами или g -излучением.

16. Алкены. Реакции радикального присоединения галогенов и галогеноводородов (механизм). Присоединение карбенов к олефинам. Этилен, пропилен, бутилены. Промышленные источники и основные пути использования.

Алкены легко присоединяют галогены, особенно хлор и бром (галогенирование).

Типичной реакцией такого типа является обесцвечивание бромной воды

CH2=CH2 + Вr2 → СH2Br-CH2Br (1,2-дибромэтан)

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:

Марковникова правило : при присоединении протонных кислот или воды к несимметричным алкенам или алкинаматом водорода присоединяется к наиболее гидрогенизированному атому углерода

гидрогенизированный атом углерода – тот атом, к которому присоединен водород. Наиболее гидрогенизированный – там где больше всего Н

Реакции присоединения карбенов

Карбены CR 2: - высокореакционные короткоживущие частицы, которые способны легко присоединяться к двойной связи алкенов . В результате реакции присоединения карбена образуются производные циклопропана

Этиле́н - органическое химическое описываемое формулой С 2 H 4 . Является простейшималкеном (олефином )соединение. При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности. Этилен - самое производимое органическое соединение в мире: Окись этилена; полиэтилен, уксусная кислота, этиловый спирт.

Основные химические свойства (не учи, просто пусть будут на всякий случай, вдруг списать получится)

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

    Галогенирование:

CH 2 =CH 2 + Br 2 → CH 2 Br-CH 2 Br

Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

    Гидрирование:

CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)

    Гидрогалогенирование:

CH 2 =CH 2 + HBr → CH 3 - CH 2 Br

    Гидратация:

CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)

Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

    Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуетсяэтиленгликоль. Уравнение реакции :

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O → 3HOH 2 C - CH 2 OH + 2MnO 2 + 2KOH

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

    Полимеризация (получение полиэтилена):

nCH 2 =CH 2 → (-CH 2 -CH 2 -) n

Пропиле́н (пропен) СН 2 =СН-СН 3 - непредельный (ненасыщенный) углеводород ряда этилена, горючий газ. Пропилен представляет собой газообразное вещество с низкой температурой кипения t кип = −47,6 °C

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти, пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля.

Первым представителем ряда алкенов является этен (этилен), чтобы построить формулу следующего представителя ряда нужно к исходной формуле прибавить группу CH 2 ; многократно повторяя такую процедуру можно построить гомологический ряд алкенов.

CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2

C 2 H 4 ® C 3 H 6 ® C 4 H 8 ® C 5 H 10 ® C 6 H 12 ® C 7 H 14 ® C 8 H 16 ® C 9 H 18 ® C 10 H 20

Чтобы построить название алкена необходимо в названии соответствующего алкана (с таким же числом атомов углерода как ив алкене) поменять суффикс – ан на - ен (или – илен).Например, алкан с четырьмя атомами углерода в цепи называется бутан, а соответствующий ему алкен – бутен (бутилен). Исключение составляет декан, соответствующий ему алкен будет называться не декен, а децен (децилен). Алкен с пятью атомами углерода в цепи помимо названия пентен имеет название амилен. В таблице ниже приведены формулы и названия первых десяти представителей ряда алкенов.

Однако, начиная с третьего, представитель ряда алкенов – бутена помимо словесного названия «бутен» после его написания должна стоять цифра 1 или 2, которая показывает местоположение двойной связи в углеродной цепи.

CH 2 = CH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен 1 бутен 2

Помимо систематической номенклатуры часто употребляются и рациональные названия алкенов при этом алкены рассматриваются, как производные этилена, в молекуле которого атомы водорода замещены на радикалы, а за основу берется название «этилен».

Например, CH 3 – CH = CH – C 2 H 5 – симметричный метилэтилэтилен.

(СH 3) – CH = CH – C 2 H 5 – симметричный этилизопропилэтилен.

(СH 3)C – CH = CH – CH(CH 3) 2 – симметричный изопропилизобутилэтилен.

Непредельные углеводородные радикалы по систематической номенклатуре называют, добавляя к корню суффикс - енил : этенил

CH 2 =CH -, пропенил-2 CH 2 = CH – CH 2 - . Но гораздо чаще для этих радикалов употребляют эмпирические названия – соответственно винил и аллил .

Изомерия алкенов.

Для алкенов характерно большое количество разных видов изомерии.

А) Изомерия углеродного скелета.

CH 2 = C – CH 2 – CH 2 – CH 3 СH 2 = CH – CH – CH 2 – CH 3

2-метил пентен-1 3-метил пентен-1

СH 2 = CH – CH 2 – CH – CH 3

4- метил пентен-1

Б) Изомерия положения двойной связи.

СH 2 = СH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен-1 бутен-2

В) Пространственная (стереоизомерия).

Изомеры, у которых одинаковые заместители расположены по одну сторону от двойной связи, называют цис -изомеры, а по разную – транс­­ -изомерами:

H 3 C CH 3 H 3 C H

цис -бутен транс -бутен

Цис - и транс - изомеры отличаются не только пространственным строением, но и многими физическими и химическими (и даже физиологическими) свойствами. Транс - Изомеры более устойчивы по сравнению с цис-изомерами . Это объясняется большей удаленностью в пространстве групп при атомах, связанных двойной связью, в случае транс – изомеров.

Г) Изомерия веществ разных классов органических соединений.

Изомерами алкенам являются циклопарафины, имеющие сходную с ними общую формулу – С n H 2 n .

CH 3 – CH = CH – CH 3

бутен -2

циклобутан

4. Нахождение алкенов в природе и способы их получения.

Также как и алканы, алкены в природе встречаются в составе нефти, попутного нефтяного и природного газов, бурого и каменного угля горючих сланцев.

А) Получение алкенов каталитической дегидрогенизацией алканов.

СH 3 – CH – CH 3 ® CH 2 = C – CH 3 + H 2 ­

CH 3 кат. (K 2 O-Cr 2 O 3 -Al 2 O 3) CH 3

Б) Дегидратация спиртов под действием серной кислоты или с участием Al 2 O ­3 (парафазная дегидратация).

этанол H 2 SO 4 (конц.) этен

C 2 H 5 OH ® CH 2 = CH 2 + H 2 O

этанол Al 2 O 3 этен

Дегидратация спиртов протекает по правилу А.М. Зайцева, согласно которому водород отщепляется от наименее гидрогенезированного атома углерода, то есть вторичного или третичного.

H 3 C – CH – C ® H 3 C – CH = C – CH 3


3-метилбутанол-2 2-метилбутен

В) Взаимодействие галогеналкилов со щелочами (дегидрогалогенирование).

H 3 C – C – CH 2 Cl + KOH ® H 3 C – C = CH 2 + H 2 O + KCl

1-хлор 2-метлпропан (спирт. р-р) 2-метилпропен-1

Г) Действие магнием или цинком на дигалогенпроизводные алкилов с атомами галогена при соседних углеродных атомах (дегалогенирование).

спирт. t

CH 3 -CHCl-CH 2 Cl + Zn ® CH 3 -CH = CH 2 + ZnCl 2

1.2- дихлорпропан пропен-1

Д) Селективное гидрирование алкинов на катализаторе.

СH º CH + H 2 ® CH 2 =CH 2

этин этен

5. Физические свойства алкенов.

Первые три представителя гомологического ряда этилена газы.

Начиная с C 5 H 10 до С 17 Н 34 – жидкости, начиная с С 18 Н 36 и далее твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены с углеродной цепью нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температура кипения цис - изомеров выше, чем транс – изомеров, а температура плавления – наоборот. Алкены малополярны, но легко поляризуются. Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы). Они хорошо растворяются в органических растворителях. Этилен и пропилен горят кипящим пламенем.

В таблице ниже приведены основные физические свойства некоторых представителей ряда алкенов.

Алкен Формула t пл. ­ o C t кип. ­ o C d 4 20
Этен (этилен) C 2 H 4 -169,1 -103,7 0,5700
Пропен (пропилен) C 3 H 6 -187,6 -47,7 0,6100 (при t(кип) )
Бутен (бутилен-1) C 4 H 8 -185,3 -6,3 0,5951
цис – Бутен-2 C 4 H 8 -138,9 3,7 0,6213
транс – Бутен-2 C 4 H 8 -105,5 0,9 0,6042
Изобутилен (2-метилпропен) C 4 H 8 -140,4 -7,0 0,6260
Пентен-1 (амилен) C 5 H 10 -165,2 +30,1 0,6400
Гексен-1 (гексилен) C 6 H 12 -139,8 63,5 0,6730
Гептен-1 (гептилен) C 7 H 14 -119 93,6 0,6970
Октен-1 (октилен) C 8 H 16 -101,7 121,3 0,7140
Нонен-1 (нонилен) C 9 H 18 -81,4 146,8 0,7290
Децен-1 (децилен) C 10 H 20 -66,3 170,6 0,7410

6. Химические свойства алкенов.

А) Присоединение водорода (гидрирование).

CH 2 = CH 2 + H 2 ® CH 3 – CH 3

этен этан

Б)Взаимодействие с галогенами (галогенирование).

Легче идет присоединение хлора и брома к алкенам, труднее - йода

CH 3 – CH = CH 2 + Cl 2 ® CH 3 – CHCl – CH 2 Cl

пропилен 1,2-дихлорпропан

В) Присоединение галогенводородов (гидрогалогенирование)

Присоединение галогенводородов к алкенам при обычных условиях протекает согласно правилу Марковникова: при ионном присоединении галогенводородов к несимметричным алкенам (при обычных условиях) водород присоединяется по месту двойной связи к наиболее гидрогенизированному (связанному с наибольшим числом водородных атомов)атому углерода, а галоген – менее гидрогенизированному.

CH 2 =CH 2 + HBr ® CH 3 – CH 2 Br

этен бромэтан

Г) Присоединение воды к алкенам (гидратация).

Присоединение воды к алкенам протекает также согласно правилу Марковникова.

CH 3 – CH = CH 2 + H – OH ® CH 3 – CHOH – CH 3

пропен-1 пропанол-2

Е) Алкилирование алканов алкенами.

Алкилирование – реакция, с помощью которой можно вводить различные углеводородные радикалы (алкилы) в молекулы органических соединений. В качестве алкилирующих средств используют галогеналкилы, непредельные углеводороды, спирты и другие органические вещества. Например, в присутствии концентрированной серной кислоты активно протекает реакция алкилирования изобутана изобутиленом:

3CH 2 = CH 2 + 2KMnO 4 + 4H 2 O ® 3CH 2 OH – CH 2 OH + 2MnO 2 + 2KOH

этен этиленгликоль

(этандиол-1,2)

Расщепление молекулы алкена по месту двойной связи может вести к образованию соответствующей карбоновой кислоты, если используется энергичный окислитель (азотная концентрированная кислота или хромовая смесь).

HNO 3(конц.)

CH 3 – CH = CH – CH 3 ® 2CH 3 COOH

бутен-2 этановая кислота (уксусная кислота)

Окисление этилена кислородом воздуха в присутствии металлического серебра ведёт к образованию этиленоксида.

2CH 2 = CH 2 + O 2 ® 2CH 2 – CH 2

И) Реакция полимеризации алкенов.

n CH 2 = CH 2 ® [–CH 2 – CH 2 –]n

этилен кат.полиэтилен

7.Применение алкенов.

А) Резка и сварка металлов.

Б) Производство красителей, растворителей, лаков, новых органических веществ.

В) Производство пластмасс и других синтетических материалов.

Г) Синтез спиртов, полимеров, каучуков

Д) Синтез лекарственных препаратов.

IV. Диеновые углеводороды (алкадиены или диолефины) – это непредельные сложные органические соединения с общей формулой C n H 2 n -2 , содержащие две двойные связи между атомами углерода в цепи и способные присоединять молекулы водорода, галогенов и других соединений в силу валентной не насыщенности атома углерода.

Первым представителем ряда диеновых углеводородов является пропадиен (аллен). Строение диеновых углеводородов сходно со строением алкенов, разница лишь только в том, что в молекулах диеновых углеводородов две двойные связи, а не одна.

Продолжение. Начало см. в № 15, 16, 17, 18, 19/2004

Урок 9.
Химические свойства алкенов

Химические cвойства алкенов (этилена и его гомологов) во многом определяются наличием в их молекулах д… связи. Алкены вступают в реакции всех трех типов, причем наиболее характерными для них являются реакции п… . Рассмотрим их на примере пропилена С 3 Н 6 .
Все реакции присоединения протекают по двойной связи и состоят в расщеплении -связи алкена и образовании на месте разрыва двух новых -связей.

Присоединение галогенов:

Присоединение водорода (реакция гидрирования):

Присоединение воды (реакция гидратации):

Присоединение галогеноводородов (HHal) и воды к несимметричным алкенам происходит по правилу В.В.Марковникова (1869). Водород кислоты Hhal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом С, при котором находится меньшее число атомов водорода.

Горение алкенов на воздухе.
При поджигании алкены горят на воздухе:

2СН 2 =СНСН 3 + 9О 2 6СО 2 + 6Н 2 О.

С кислородом воздуха газообразные алкены образуют взрывчатые смеси.
Алкены окисляются перманганатом калия в водной среде, что сопровождается обесцвечиванием раствора KMnO 4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах С). Этот процесс – гидроксилирование алкенов :

Алкены окисляются кислородом воздуха в эпоксиды при нагревании в присутствии серебряных катализаторов:

Полимеризация алкенов – связывание множества молекул алкена друг с другом. Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных-cвязей и образования новых межмолекулярных -cвязей:

В этой реакции диапазон значений n = 10 3 –10 4 .

Упражнения.

1. Напишите уравнения реакций бутена-1 с: а) Br 2 ; б) HBr; в) H 2 O; г) H 2 . Назовите продукты реакций.

2. Известны условия, в которых присоединение воды и галогеноводородов по двойной связи алкенов протекает против правила Марковникова. Составьте уравнения реакций
3-бромпропилена по анти-Марковникову с: а) водой; б) бромоводородом.

3. Напишите уравнения реакций полимеризации: а) бутена-1; б) винилхлорида СН 2 =СНСl;
в) 1,2-дифторэтилена.

4. Составьте уравнения реакций этилена с кислородом для следующих процессов: а) горение на воздухе; б) гидроксилирование с водным KMnO 4 ; в) эпоксидирование (250 °С, Ag).

5. Напишите структурную формулу алкена, зная, что 0,21 г этого соединения способно присоединить 0,8 г брома.

6. При сгорании 1 л газообразного углеводорода, обесцвечивающего малиновый раствор перманганата калия, расходуется 4,5 л кислорода, причем получается 3 л СО 2 . Составьте структурную формулу этого углеводорода.

Урок 10.
Получение и применение алкенов

Реакции получения алкенов сводятся к обращению реакций, представляющих химические свойства алкенов (протеканию их справа налево, см. урок 9). Надо только подыскать соответствующие условия.
Отщепление двух атомов галогена от дигалогеноалканов , содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

Крекинг предельных углеводородов. Так, при крекинге (см. урок 7) этана образуется смесь этилена и водорода:

Дегидратация спиртов. При действии на спирты водоотнимающих средств (концентрированной серной кислоты) или при нагревании 350 °С в присутствии катализаторов отщепляется вода и образуются алкены:

Таким способом в лаборатории получают этилен.
Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Дегидрохлорирование хлоралканов проводят при действии на них раствора щелочи в спирте, т.к. в воде продуктами реакции оказываются не алкены, а спирты.

Применение этилена и его гомологов основано на их химических свойствах, т. е. способности превращаться в различные полезные вещества.

Моторные топлива , обладающие высокими октановыми числами, получают гидрированием разветвленных алкенов:

Обесцвечивание желтого раствора брома в инертном растворителе (ССl 4) происходит при добавлении капли алкена или пропускании через раствор газообразного алкена. Взаимодействие с бромом – характерная качественная реакция на двойную связь :

Продукт гидрохлорирования этилена – хлорэтан – используют в химическом синтезе для введения группы С 2 Н 5 – в молекулу:

Хлорэтан также обладает местным анестезирующим (обезболивающим) действием, что используется при хирургических операциях.

Гидратацией алкенов получают спирты, например, этанол :

Спирт C 2 H 5 ОН используют как растворитель, для дезинфекции, в синтезе новых веществ.

Гидратация этилена в присутствии окислителя [O] приводит к этиленгликолю – антифризу и полупродукту химического синтеза :

Окислением этилена получают этиленоксид и ацетальдегид – сырье в химической отрасли промышленности:

Полимеры и пластики – продукты полимеризации алкенов, например, политетрафторэтилен (тефлон):

Упражнения.

1. Завершите уравнения реакций элиминирования (отщепления), назовите получающиеся алкены :

2. Составьте уравнения реакций гидрирования: а) 3,3-диметилбутена-1;
б) 2,3,3-триметилбутена-1. В этих реакциях получаются алканы, используемые в качестве моторных топлив, дайте им названия.

3. Через трубку с нагретым оксидом алюминия пропустили 100 г этилового спирта С 2 Н 5 ОН. В результате получили 33,6 л углеводорода (н.у.). Сколько спирта (в %) прореагировало?

4. Сколько граммов брома прореагирует с 2,8 л (н.у.) этилена?

5. Составьте уравнение реакции полимеризации трифторхлорэтилена. (Образующаяся пластмасса устойчива к действию горячей серной кислоты, металлического натрия и т.п.)

Ответы на упражнения к теме 1

Урок 9

5. Реакция алкена С n H 2n с бромом в общем виде:

Молярная масса алкена M n H 2n ) = 0,21 160/0,8 = 42 г/моль.
Это – пропилен.
Ответ . Формула алкена – СН 2 =СНСН 3 (пропилен).

6. Поскольку все участвующие в реакции вещества – газы, стехиометрические коэффициенты в уравнении реакции пропорциональны их объемным соотношениями. Запишем уравнение реакции:

С a H в + 4,5О 2 3СО 2 + 3Н 2 О.

Число молекул воды определяем по уравнению реакции: 4,5 2 = 9 атомов О вступило в реакцию, 6 атомов О связаны в СО 2 , остальные 3 атома О входят в состав трех молекул Н 2 О. Поэтому индексы равны: а = 3, в = 6. Искомый углеводород – пропилен С 3 Н 6 .
Ответ . Структурная формула пропилена – СН 2 =СНСН 3 .

Урок 10

1. Уравнения реакций элиминирования (отщепления) – синтез алкенов:

2. Реакции гидрирования алкенов при нагревании под давлением в присутствии катализатора:

3. Реакция дегидратации этилового спирта имеет вид:

Здесь через х обозначена масса спирта, превратившегося в этилен.
Найдем значение х : х = 46 33,6/22,4 = 69 г.
Доля прореагировавшего спирта составила: 69/100 = 0,69, или 69%.
Ответ . Прореагировало 69% спирта.

4.

Поскольку стехиометрические коэффициенты перед формулами реагирующих веществ (С 2 Н 4 и Br 2) равны единице, справедливо соотношение:
2,8/22,4 = х /160. Отсюда х = 20 г Br 2 .
Ответ . 20 г Br 2 .

Простейшим алкеном является этен C 2 H 4 .По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.



Пространственная структура этилена


По названию первого представителя этого ряда - этилена - такие углеводороды называют этиленовыми.

Номенклатура и изомерия

Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.


По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:



Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:



Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:


Н 2 С = СН - - винил (этенил)


Н 2 С = CН - СН 2 - -аллил (пропенил-2)

Изомерия

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.


Первые два члена гомологического ряда алкенов -(этилен и пропилен) - изомеров не имеют и их строение можно выразить так:


H 2 C = CH 2 этилен (этен)


H 2 C = CH - CH 3 пропилен (пропен)

Изомерия положения кратной связи

H 2 C = CH - CH 2 - CH 3 бутен-1


H 3 C - CH = CH - CH 3 бутен-2

Геометрическая изомерия - цис-, транс- изомерия.

Такая изомерия характерна для соединений с двойной связью.


Если простая σ -связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс- ) изомеров.


Геометрическая изомерия - один из видов пространственной изомерии.


Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами,а по разную - транс-изомерами:



Цис- и транс- изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс- изомеры более устойчивы, чем цис- изомеры.

Получение алкенов

В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.


В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr 2 О 3).

Дегидрирование алканов

H 3 C - CH 2 - CH 2 - CH 3 → H 2 C = CH - CH 2 - CH 3 + H 2 (бутен-1)


H 3 C - CH 2 - CH 2 - CH 3 → H 3 C - CH = CH - CH 3 + H 2 (бутен-2)


Из лабораторных способов получения можно отметить следующие:


1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:



2. Гидрирование ацетилена в присутствии катализатора (Pd):


H-C ≡ C-H + H 2 → H 2 C = CH 2


3. Дегидратация спиртов (отщепление воды).
В качестве катализатора используют кислоты (серную или фосфорную) или Аl 2 O 3:



В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):


Физические свойства

Физические свойства некоторых алкенов показаны в таблице ниже. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) - газы, начиная с C 5 H 10 (амилен, или пентен-1) - жидкости, а с С 18 Н 36 - твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис -изомеров выше, чем транс -изомеров, а температуры плавления - наоборот.


Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо - в органических растворителях. Этилен и пропилен горят коптящим пламенем.

Физические свойства некоторых алкенов

Название

t пл,°С

t кип,°С

Этилен (этен)

Пропилен (пропен)

Бутилен (бутен-1)

Цис-бутен-2

Транс-бутен-2

Изобутилен (2-метилпропен)

Амилен (пентен-1)

Гексилен (гексен-1)

Гептилен (гептен-1)

Октилен (октен-1)

Нонилен (нонен-1)

Децилен (децен-1)


Алкены малополярны, но легко поляризуются.

Химические свойства

Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью.


π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:



Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением σ-связи).


Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.

Реакции присоединения

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.


1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды - алканы:


Н 2 С = СН 2 + H 2 Н 3 С - СН 3 (этан)


2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:


Н 2 С = СН 2 + Cl 2 → ClH 2 C - CH 2 Cl (1,2-дихлорэтан)


Легче идет присоединение хлора и брома, труднее - иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.






Сравните: у алкенов реакция галогенирования - процесс присоединения, а не замещения (как у алканов).


Реакцию галогенирования обычно проводят в растворителе при обычной температуре.


Присоединение брома и хлора к алкенам происходит по ионному, а не по радикальному механизму. Этот вывод следует из того, что скорость присоединения галогена не зависит от облучения, присутствия кислорода и других реагентов, инициирующих или ингибирующих радикальные процессы. На основании большого числа экспериментальных данных для этой реакции был предложен механизм, включающий несколько последовательных стадий. На первой стадии происходит поляризация молекулы галогена под действием электронов π-связи. Атом галогена, приобретающий некоторый дробный положительный заряд, образует с электронами π-связи нестабильный интермедиат, называемый π-комплексом или комплексом с переносом заряда. Следует отметить, что в π-комплексе галоген не образует направленной связи с каким-нибудь конкретным атомом углерода; в этом комплексе просто реализуется донорно-акцепторное взаимодействие электронной пары π-связи как донора и галогена как акцептора.



Далее π-комплекс превращается в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р -орбиталь sp 2 -гибридизованного атома углерода перекрывается с р -орбиталью "неподеленной пары" электронов атома галогена, образуя циклический ион бромония.



На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (vic -рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение S N 2 у атома углерода, где уходящей группой является Br + .



Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.


Быстрое обесцвечивание раствора брома в СCl 4 служит одним из простейших тестов на ненасыщенность, поскольку и алкены, и алкины, и диены быстро реагируют с бромом.


Присоединение брома к алкенам (реакция бромирования) - качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных - сохраняется).


3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:


H 2 С = СН 2 + НВr → Н 3 С - CH 2 Вr


Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837 - 1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген - к менее гидрогенизированному:



Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием метильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).


Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома - к углероду с частичным положительным зарядом.


Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода.


Поэтому в метильной группе наблюдается некоторая поляризация σ-связей С-Н, связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О 2 (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.


По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводородов, но и других электрофильных реагентов (H 2 O, H 2 SО 4 , НОСl, ICl и др.).


4. Гидратация (присоединение воды). В присутствии катализаторов к алкенам присоединяется вода с образованием спиртов. Например:


H 3 C - CH = CH 2 + H - OH → H 3 C - CHOH - CH 3 (изопропиловый спирт)

Реакции окисления

Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.


1. Горение


Н 2 С = СН 2 + 3O 2 → 2СO 2 + 2Н 2 O


2. Неполное каталитическое окисление


3. Окисление при обычной температуре. При действии на этилен водного раствора КМnO 4 (при нормальных условиях, в нейтральной или щелочной среде - реакция Вагнера) происходит образование двухатомного спирта - этиленгликоля:


3H 2 C = CH 2 + 2KMnO 4 + 4H 2 O → 3HOCH 2 - CH 2 OH (этиленгликоль)+ 2MnO 2 + KOH


Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.


В более жестких условиях (окисление КМnO 4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:


H 3 C - CH = CH - CH 3 + 2O 2 → 2H 3 C - COOH (уксусная кислота)

Реакция изомеризации

При нагревании или в присутствии катализаторов алкены способны изомеризоваться - происходит перемещение двойной связи или установление изостроения.

Реакции полимеризации

За счет разрыва π-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.



Нахождение в природе и физиологическая роль алкенов

В природе ациклические алкены практически не встречаются. Простейший представитель этого класса органических соединений - этилен C 2 H 4 - является гормоном для растений и в незначительном количестве в них синтезируется.


Один из немногих природных алкенов - мускалур (цис- трикозен-9) является половым аттрактантом самки домашней мухи (Musca domestica) .


Низшие алкены в высоких концентрациях обладают наркотическим эффектом. Высшие члены ряда также вызывают судороги и раздражение слизистых оболочек дыхательных путей

Отдельные представители

Этилен (этен) - органическое химическое соединение,описываемое формулой С 2 H 4 . Является простейшим алкеном. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном (низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции).


Этилен - вызывает наркоз, обладает раздражающим и мутагенным действием.


Этилен - самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3% в год.


Этилен является ведущим продуктом основного органического синтеза и применяется для получения полиэтилена (1-е место, до 60 % всего объёма).


Полиэтилен - термопластичный полимер этилена. Самый распространенный в мире пластик.


Представляет собой воскообразную массу белого цвета (тонкие листы прозрачный бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (сцепление поверхностей разнородных твёрдых и/или жидких тел) - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.


Пропилен - вызывает наркоз (сильнее, чем этилен), оказывает общетоксическое и мутагенное действие.


Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. Со временем, происходит термостарение.


Полиэтиленовая плёнка (особенно упаковочных, например, пузырчатая упаковка или скотч).



Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады.


Полимерные трубы для канализации, дренажа, водо-, газоснабжения.



Электроизоляционный материал.


Полиэтиленовый порошок используется как термоклей.



Бутен-2 - вызывает наркоз, обладает раздражающим действием.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то