Системы уравнений: определение, виды, примеры решения. Основные методы решения систем уравнений

Системы линейных уравнений.

Система уравнений называется линейной, если все уравнения, входящие в систему, являются линейными. Систему уравнений принято записывать с помощью фигурной скобки, например:

Определение: Пара значений переменных, обращающая в верное равенство каждое уравнение с двумя переменными, входящих в систему, называется решением системы уравнений.

Решить систему - значит найти все ее решения или доказать, что решений нет.

При решении системы линейных уравнений возможны следующие три случая:

система не имеет решений;

система имеет ровно одно решение;

система имеет бесконечно много решений.
I. Решение системы линейных уравнений методом подстановки.

Данный метод также можно назвать «метод подстановки» или методом исключения неизвестных.



Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа -5 и -7) расположены в левой части уравнения. Запишем систему в обычном виде.

Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти такие значения переменных, которые обращают каждое уравнение системы в верное равенство. Это утверждение справедливо для любых систем уравнений с любым количеством неизвестных.

Решаем.


Из первого уравнения системы выражаем:
. Это и есть подстановка.

Полученное выражение подставляем во второе уравнение системы вместо переменной

Решим данное уравнение относительно одной переменной.
Раскрываем скобки, приводим подобные слагаемые и находим значение :


4) Далее возвращаемся к подстановки , чтобы вычислить значение .Значение нам уже известно, осталось найти:

5) Пара
– единственное решение заданной системы.

Ответ: (2,4; 2,2).

После того, как решена любая система уравнений любым способом, настоятельно рекомендую выполнить проверку на черновике. Делается это легко и быстро.

1) Подставляем найденный ответ первое уравнение:


– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение:


– получено верное равенство.

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .


Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Однако необходимо оценивать подстановку, так чтобы в ней как можно меньше было дробных выражений. Самый невыгодные из четырех способов – выразить из второго или из первого уравнения:

или

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. Любое задание следует стремиться выполнить самым рациональным способом. Это экономит время, а также снижает вероятность допустить ошибку.
Пример 2

Решить систему линейных уравнений


II. Решение системы методом алгебраического сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений можно использовать не метод подстановки, а метод алгебраического сложения (вычитания) уравнений системы. Этот метод экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Решить систему линейных уравнений:


Возьмём ту же систему, что и первом примере.


1) Анализируя систему уравнений, замечаем, что коэффициенты при переменной у одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:


2) Решим данное уравнение относительно одной переменной.

Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных.

3) Теперь всё просто:
– подставляем в первое уравнение системы (можно и во второе):

В чистовом оформлении решение должно выглядеть примерно так:


Ответ: (2,4; 2,2).


Пример 4

Решить систему линейных уравнений:




В данном примере можно использовать метод подстановки, но большой минус состоит в том, что когда мы будем выражать какую-либо переменную из любого уравнения, то получим решение в обыкновенных дробях. Действия с дробями мало кто любит, а значит это потеря времени, и велика вероятность допустить ошибку.

Поэтому целесообразно использовать почленное сложение (вычитание) уравнений. Анализируем коэффициенты при соответствующих переменных:

Как видим числа в парах (14 и 7), (-9 и –2) – разные, поэтому, если сложить (вычесть) уравнения прямо сейчас, то от переменной мы не избавимся. Таким образом, хотелось бы видеть в одной из пар одинаковые по модулю числа, например, 14 и -14 либо 18 и –18.

Будем рассматривать коэффициенты при переменной .

14х – 9у = 24;

7х – 2у = 17.
Подбираем такое число, которое делилось бы и на 14 и на 7, причем оно должно быть как можно меньше. В математике такое число называется наименьшим общим кратным. Если Вы затрудняетесь с подбором, то можно просто перемножить коэффициенты.


Второе уравнение умножаем на 14: 7 =2.

В результате:


Вот теперь из первого уравнения почленно вычитаем второе.


Следует отметить, что можно было бы наоборот – из второго уравнения вычесть первое, это ничего не меняет.

Теперь подставляем найденное значение в какое-нибудь из уравнений системы, например, в первое:

Ответ: (3:2)


Решим систему другим способом. Рассмотрим коэффициенты при переменной .

14х – 9у = 24;

7х – 2у = 17.

Очевидно, что вместо пары коэффициентов (-9 и –3) нам нужно получить 18 и –18.


Для этого первое уравнение умножаем на (-2), второе уравнение умножаем на 9:


Почленно складываем уравнения и находим значения переменных:



Теперь подставляем найденное значение х в какое-нибудь из уравнений системы, например, в первое:



Ответ: (3:2)


Второй способ несколько рациональнее, чем первый, так как складывать проще и приятнее чем вычитать. Чаще всего при решении систем стремятся складывать и умножать, а не вычитать и делить.
Пример 5

Решить систему линейных уравнений:

Это пример для самостоятельного решения (ответ в конце лекции).
Пример 6.

Решить систему уравнений

Решение. Система не имеет решений, так как два уравнения системы не могут удовлетворяться одновременно (из первого уравнения
а из второго

Ответ: Решений нет.
Пример 7.

решить систему уравнений

Решение. Система имеет бесконечно много решений, так как второе уравнение получается из первого путём умножения на 2 (т.е. фактически есть всего одно уравнение с двумя неизвестными).

Ответ: Бесконечно много решений.
III. Решение системы c помощью матриц .

Определителем этой системы называется определитель, составленный из коэффициентов при неизвестных. Этот определитель

1. Метод подстановки : из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.


Задача. Решить систему уравнений:


Решение. Из первого уравнения системы выражаем у через х и подставляем во второе уравнение системы. Получим систему равносильную исходной.


После приведения подобных членов система примет вид:


Из второго уравнения находим: . Подставив это значение в уравнение у = 2 - 2х , получим у = 3. Следовательно, решением данной системы является пара чисел .


2. Метод алгебраического сложения : путем сложения двух уравнений получить уравнение с одной переменной.


Задача. Решить систему уравнение:



Решение. Умножив обе части второго уравнения на 2, получим систему равносильную исходной. Сложив два уравнения этой системы, придем к системе


После приведения подобных членов данная система примет вид: Из второго уравнения находим . Подставив это значение в уравнение 3х + 4у = 5, получим , откуда . Следовательно, решением данной системы является пара чисел .


3. Метод введения новых переменных : ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.


Задача. Решить систему уравнений:



Решение. Запишем данную систему иначе:


Пусть х + у = u, ху = v. Тогда получим систему


Решим ее методом подстановки. Из первого уравнения системы выразим u через v и подставим во второе уравнение системы. Получим систему т.е.


Из второго уравнение системы находим v 1 = 2, v 2 = 3.


Подставив эти значения в уравнение u = 5 - v , получим u 1 = 3,
u 2 = 2. Тогда имеем две системы


Решая первую систему, получим две пары чисел (1; 2), (2; 1). Вторая система решений не имеет.


Упражнения для самостоятельной работы


1. Решить системы уравнений методом подстановки.


Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то