Перерабатывающие технологии. Новые технологии переработки бытовых и отходов производства в современном мире. Оборудование для захоронения отходов

ВВЕДЕНИЕ.

1. ЛИТЕРАТУРНЫЙ ОБЗОР.

1.1. Анализ состояния вторичной переработки полимерных материалов.

1.2. Утилизация отходов полиолефинов.

1.2.1. Структурно-химические особенности вторичного полиэтилена.

1.2.2. Технология переработки вторичного полиолефинового сырья в гранулят.

1.2.3. Способы модификации вторичных полиолефинов.

1.3. Утилизация и вторичная переработка отходов поливинилхлорида, полистирольных пластиков, полиамидов, полиэтилентерефталата.

1.4. Постановка задачи исследования.

2. ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА И ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ.

2.1.Технологический процесс вторичной переработки отходов полимерных материалов по непрерывной технологии.

2.2. Описание экспериментальной установки.

2.3. Расчет геометрических размеров отборочно-гранулирующего устройства.

2.3.1. Определение давления на входе в отборочно-гранулирующее устройство.

2.3.2. Определение перепада давления на входе в канал круглой формы.

2.3.3. Определение перепада давления в канале круглой формы

2.3.4. Определение перепада давления на входе в канал фильеры.

2.3.5. Определение перепада давления в канале фильеры.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОЦЕССА ПЕРЕРАБОТКИ ТЕРМОПЛАСТОВ НА ВАЛЬЦАХ НЕПРЕРЫВНОГО ДЕЙСТВИЯ.

3.1. Определение реологических свойств пленочных отходов полиэтилена низкой плотности.

3.2. Определение безразмерных координат сечения входа Хн и выхода Хк.

3.3. Методика проведения эксперимента.

3.4. Получение зависимостей свойств гранулята от технологических и конструктивных параметров переработки при использовании нижнего отборочно-гранулирующего устройства.

3.5. Получение зависимостей свойств гранулята от технологических и конструктивных параметров переработки при использовании бокового отборочно-гранулирующего устройства.

3.6. Сравнение свойств гранулята полученного из первичного ПЭНП и из пленочных отходов ПЭНП при найденных режимах переработки.

3.7. Сравнительная характеристика свойств вторичных полимерных материалов полученных из пленочных отходов по различным технологиям.

4. ИССЛЕДОВАНИЕ ВЛИЯНИЯ СУММАРНОЙ ВЕЛИЧИНЫ СДВИГА НА ФИЗИКО-МЕХАНИЧЕСКИЕ ПОКАЗАТЕЛИ

ПЕРЕРАБАТЫВАЕМОГО МАТЕРИАЛА.

4.1. Определение суммарной величины сдвига при непрерывном режиме процесса вальцевания термопластов.

4.1.1. Определение величины сдвига вдоль оси X.

4.1.2. Определение суммарной величины сдвига.

4.2. Зависимость физико-механических показателей гранулята от величины сдвига при периодическом и непрерывном режимах работы вальцев.

5. МЕТОДИКА ИНЖЕНЕРНОГО РАСЧЕТА ОСНОВНЫХ ПАРАМЕТРОВ НЕПРЕРЫВНОГО ПРОЦЕССА ВАЛЬЦЕВАНИЯ

И КОНСТРУКЦИИ ОБОРУДОВАНИЯ.

5.1. Расчет основных параметров процесса и оборудования по первому варианту.

5.2. Расчет основных параметров процесса и оборудования по второму варианту.

Рекомендованный список диссертаций

  • Разработка конструкции валково-шнекового агрегата и совмещенного технологического процесса утилизации полимерной тары и упаковки 2008 год, кандидат технических наук Полушкин, Дмитрий Леонидович

  • Разработка оборудования и технологии для утилизации отходов термопластов 2012 год, кандидат технических наук Макеев, Павел Владимирович

  • Получение композита с заданными показателями качества из вторичного полиэтилена в смесителе периодического действия 2011 год, кандидат технических наук Гуреев, Сергей Сергеевич

  • Методология расчета и проектирования оборудования для производства длинномерных профильных резинотехнических заготовок заданного качества 2009 год, доктор технических наук Соколов, Михаил Владимирович

  • Разработка конструкции и метода расчета установки для измельчения полимерных отходов 2001 год, кандидат технических наук Белобородова, Татьяна Геннадиевна

Введение диссертации (часть автореферата) на тему «Валковое оборудование и технология процесса непрерывной переработки отходов пленочных термопластов»

1. В настоящее время проблема переработки отходов полимерных материалов имеет актуальное значение. В первую очередь с позиций охраны окружающей среды, но также и с тем, что в условиях дефицита полимерного сырья, пластмассовые отходы становятся мощным сырьевым и энергетическим ресурсом.

Проблем, связанных с утилизацией полимерных отходов, достаточно много. Они имеют свою специфику, но их нельзя считать неразрешимыми. Однако решение невозможно без организации сбора, сортировки и первичной обработки амортизованных материалов и изделий; без разработки системы цен на вторичное сырьё, стимулирующих предприятия к их переработке; без создания эффективных способов переработки вторичного полимерного сырья, а также методов его модификации с целью повышения качества; без создания специального оборудования для его переработки; без разработки номенклатуры изделий, выпускаемых из вторичного полимерного сырья.

Отходы пластических масс делятся на: технологические отходы производства, которые возникают при синтезе и переработке термопластов; отходы производственного потребления - накапливаются в результате выхода из строя изделий из полимерных материалов, используемых в различных отраслях народного хозяйства; отходы общественного потребления, которые накапливаются у нас дома, на предприятиях общественного питания и т.д., а затем попадают на городские свалки; в конечном итоге они переходят в новую категорию отходов - смешанные отходы.

Наибольшие трудности связаны с переработкой и использованием смешанных отходов.

Основное количество отходов уничтожают - захоронением в почву или сжиганием. Однако уничтожение отходов экономически невыгодно и технически сложно. Кроме того, захоронение, затопление и сжигание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организация свалок) и т.д. Автор выражает благодарность за помощь в области математического моделирования и программирования к.т.н., доц. кафедры «ПП и УП» ТГТУ Соколову М.В.

Термические методы, применяемые для разложения отходов пластмасс, и создание биоразрушающихся полимеров требуют значительных финансовых затрат, сложны технологически. Поэтому наиболее приемлемым с точки зрения охраны окружающей среды и финансовых затрат является переработка отходов полимерных материалов механическим рециклингом.

Однако имеющаяся технология переработки отходов полимерных материалов, включающая в себя измельчение, мойку, сушку, переработку в чер-вячно-дисковых экструдерах, требует значительных затрат электроэнергии, трудовых затрат, увеличение производственных площадей, что приводит к увеличению себестоимости продукции. В связи с этим предлагается непрерывная технология переработки отходов пленочных полимерных материалов на вальцах. Применение данной технологии предполагает снижение энергозатрат, трудовых затрат, сокращение производственных площадей, что приведет к уменьшению себестоимости продукции.

Также, до настоящего времени, отсутствует математическая модель процесса переработки полимерного материала в межвалковом зазоре валкового оборудования непрерывного действия и методика инженерного расчета основных технологических параметров непрерывного процесса вальцевания и конструктивных параметров валковых пластикаторов-грануляторов непрерывного действия с учетом заданного качества получаемого гранулята. Поэтому поставленная в настоящей работе задача изучения непрерывного процесса переработки отходов термопластичных пленочных полимерных материалов на валковом оборудовании является весьма актуальной как в научном, так и практическом плане.

Настоящая работа посвящена теоретическому и экспериментальному исследованию процесса вторичной переработки отходов пленочных термопластичных полимерных материалов по непрерывной технологии на валковом оборудовании.

2. В данной работе исследовался непрерывный процесс переработки отходов пленочных термопластов на валковой установке с изменением в широком диапазоне технологических и конструктивных параметров.

3. Научная новизна. Разработана математическая модель процесса переработки пленочных термопластичных полимерных материалов на валковых пластикаторах-грануляторах непрерывного действия, позволяющая рассчитывать суммарную величину сдвига, зависящую от различных технологических (частоты вращения валков, величины минимального зазора между валками, величины фрикции, величины "запаса" материала на валках) и конструктивных (конструкции отборочно-гранулирующего устройства, геометрических размеров фильеры) параметров процесса, при которой достигаются заданные физико-механические показатели получаемого гранулята.

Разработан технологический процесс вторичной переработки пленочных отходов термопластов на валковом оборудовании непрерывного действия.

Предложена методика инженерного расчета основных параметров непрерывного процесса вальцевания и конструкции валкового пластикатора-гранулятора непрерывного действия с заданным качеством получаемого гранулята.

4. Практическая ценность. Создана методика инженерного расчета и даны рекомендации по проектированию вновь разрабатываемого и модернизации существующего валкового оборудования непрерывного действия для переработки отходов пленочных термопластов с учетом заданной производительности и качества получаемого гранулята.

Создана экспериментальная установка, позволяющая определять технологические параметры процесса (частоту вращения валков, величину минимального зазора между валками, величину фрикции, величину "запаса" материала на валках) и конструктивные параметры оборудования (конструкцию отборочно-гранулирующего устройства, геометрические размеры фильеры) при которых достигаются максимальные прочностные показатели получаемого гранулята (предел прочности и относительное удлинение при растяжении).

Предложенная в работе математическая модель может быть также использована для расчета суммарной величины сдвига при непрерывной переработке на валковом оборудовании различных полимерных материалов.

Разработанные методика инженерного расчета и программное обеспечение внедрены на ОАО "НИИРТмаш" (г. Тамбов), что позволило сократить затраты времени на проектирование валковых-пластикаторов грануляторов непрерывного действия.

Полученный на разработанной установке гранулированный из отходов вторичный полиэтилен низкой плотности используется на HI 111 ООО «Эласт» в производстве полиэтиленовых труб методом экструзии.

Программное обеспечение на ЭВМ для расчета основных параметров непрерывного процесса вальцевания и конструкции применяемого оборудования непрерывного действия используется в учебном процессе при подготовке инженеров по специальности 261201 по дисциплинам "Оборудование для производства тары и упаковки", "Утилизация упаковки" и магистров по программе 150400.26 по дисциплине "Утилизация и вторичная переработка полимерных материалов".

5. Достоверность полученных результатов и сделанных выводов обеспечивается большим количеством варьируемых параметров при экспериментах по переработке пленочных отходов полиэтилена низкой плотности на разработанной установке по непрерывной технологии, приемлемой воспроизводимостью опытов и сравнением экспериментальных данных с расчётными.

6. Апробация работы и публикации. По теме диссертации сделаны доклады на 4-х международных и 3-х региональных научно-технических конференциях, опубликовано 13 печатных работ.

Коллективу кафедры "Переработка полимеров и упаковочное производство" ТГТУ автор выражает благодарность за помощь в работе.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

Похожие диссертационные работы по специальности «Машины, агрегаты и процессы (по отраслям)», 05.02.13 шифр ВАК

  • Вторичная переработка полимерных оболочек нефтепогружных силовых кабелей 2013 год, кандидат технических наук Лаврентьева, Анна Ивановна

  • Вальцы для изготовления полимерных рифленых листов: разработка конструкции и метода расчета 2005 год, кандидат технических наук Абакачева, Елена Мидхатовна

  • Изучение технологических особенностей и свойств композитов на основе полиэтилена и дисперсных наполнителей 2013 год, кандидат технических наук Егорова, Олеся Владимировна

  • Полимер-древесные материалы на основе отходов древесины и вторичных термопластов 2001 год, кандидат технических наук Шакина, Анна Анатольевна

  • Обоснование технологического процесса и параметров экструзионной установки для производства биоразлагаемых упаковочных материалов на основе вторичных ресурсов АПК 2018 год, кандидат технических наук Шабарин, Александр Александрович

Заключение диссертации по теме «Машины, агрегаты и процессы (по отраслям)», Шашков, Иван Владимирович

Результаты работы приняты ОАО НИИРТМаш к использованию при проектировании промышленных вальцев по переработке отходов пленочных термопластов. Рассчитанный экономический эффект от создания валкового оборудования составляет 225, тыс. руб.

Гранулы, полученные на экспериментальной установке из отходов ПЭНП промышленного и общественного потребления, используются на НЛП ООО «Эласт» в производстве полиэтиленовых труб методом экструзии.

Методика инженерного расчета и программное обеспечение на ЭВМ для проектирования валковых пластикаторов-грануляторов внедрены в учебный процесс при подготовке инженеров по специальности 261201 по дисциплинам "Оборудование для производства тары и упаковки", "Утилизация упаковки" и магистров по программе 150400.26 по дисциплине "Утилизация и вторичная переработка полимерных материалов".

Список литературы диссертационного исследования кандидат технических наук Шашков, Иван Владимирович, 2005 год

1. Пономарева В.Т., Лихачева Н.Н., Ткачик 3. А. Использование пластмассовых отходов за рубежом. Пластические массы. 2002. №5. С.44-48.

2. Hinterwaldner R. et al. Coating. 1995. B.28, №10. S.364,366-367,370.

3. NiePner N. Kunststoffe. 1998. B.88, №6. S.874-876,878-880.

4. Ckapelle A. Kunststoffe. 1995. B.85, №10. S.1636,1638-1640.

5. Вторичные ресурсы: проблемы, перспективы, технология, экономика. Учеб. Пособие / Лобачев Г.К., Желтобрюхов В.Ф. и др.; Волгоград, 1999, 180с.

6. Пластмассовые отходы, их сбор, сортировка, переработка, оборудование. Пластические массы. 2001. №12. С.3-10.

7. Одесс В.И. Вторичные ресурсы: хозяйственный механизм использования. М., 1988, 15с.

8. Андрейцев Д.Ф., Артемьева Т.Е., Вильниц С.А. Технические и экономические проблемы вторичной переработки и использования полимерных материалов. М., 1972, 83с.

9. Вторичное использование полимерных материалов / Под ред. Лю-бешкиной Е.Г. М., 1985, 192с.

10. Hunkeler D. et al. Polum. News. 1998. V.23, №3. S.93-94.

11. Petrotekku. Petrotech. 1997. V.20, №8. S.651-656.

12. Mod. Plast. Int. 1996. V.26, №3. S.86.

13. Wang Jing. et al. Huanjing kexue. Chin. J Envion. 1998, V.19, №5. S.52-54.

14. Lefevre C. et al. Chim nouv. 1998. V.16, №62. S. 1921-1922.

15. Tailleur J.-P. Usine nouv. 1998. Hors serie no V., S.76-77.

16. Патент Японии 2725870, опубл. 1998.

17. Schlicht R. Kunststoffe. 1998. B.88, №6. S.888-890.

18. Патент США 5443780, опубл. 1995.

19. Bruce G. Chem. Week. V.159, №15. S.32.

20. Мономеры для поликонденсации / Под ред. Стилла Д. М., 1976.253с.

21. Фомин В.А., Гузеев В.В. Биоразлагаемые полимеры, состояние и перспективы использования. Пластические массы. 2001. №2. С.42-47.

22. Васнев В.А. Биоразлагаемые полимеры. Высокомол. соед., сер.Б. 1997. Т39, №12. С. 2073-2086.

23. Rasch R. Chem.-Ing.-Techn. 1976. Jg.48, №1. S.82-84.

24. Аристархов Д.В., Журавский Г.И. и др. Технологии переработки отходов растительной биомассы, технической резины и пластмассы. Инженерно- физический журнал. 2001. №6. С. 152-156.

25. Rasch R. Chem.-Ztg. 1974. В.98, №5. S.253-260

26. Umwelt. 1979. №4. S.278-280.

27. Кастнер X., Камински В. Повторная переработка пластиков в исходное сырье. Нефтегазовые технологии. 1995. №6. С.42-44.

28. Штарке Л. Использование промышленных и бытовых отходов пластмасс: Пер. с нем. / Под ред. Брагинского В.А.; Л., 1987. 176с.

29. Полачек Й., Маховска С., Вельгош 3. Пластические массы. 1998. №5. С.38-43.

30. Бобович Б.Б. Утилизация отходов полимеров: Учеб. пособие. М., 1998. 62с.

31. Миигалеев М.С., Левин B.C., Черников В.В., Ковалева Р.И. В кн.: Производство и переработка пластмасс и синтетических смол. М., 1979. вып.1. С.40-44.

32. Акутин М.С., Забара М.Я., Жукова И.Г., Шишкова М.А. В кн.: Производство и переработка пластмасс и синтетических смол. М., 1977. вып. 6. С.28-34.

33. Забара М.Я. В кн.: Производство и переработка пластмасс и синтетических смол. М., 1978. вып. 10. С.26-31.

34. Забара М.Я., Кондратьева В.В. и др. В кн.: Производство и переработка пластмасс и синтетических смол. М., 1975. вып.1. С.54-58.

35. Улановский М.Л., Левин B.C. и др. В кн.: Производство и переработка пластмасс и синтетических смол. М., 1982. выпЗ. С.7-9.

36. Харечко Т.В. Канд. дис. М., 1981.

37. Шляпинтох В.Я. Фотохимические превращения и стабилизация полимеров. М., 1979. 344с.

38. Рэнгби Б., Рабек Я. Фотодеструкция, фотоокисление и фотостабилизация полимеров. М., 1978. 676с.

39. Эмануэль Н.М. Успехи химии. 1979. Т.48, №12. С.2113-2163.

40. Слободецкая Е.М. Успехи химии. 1980. Т.49, №8. С. 1594-1616.

41. Шляпников Ю.А. Успехи химии. 1981. Т.50, №6. С. 1105-1140.

42. Карпухин О.Н., Слободецкая Е.М., Магомедов Т.В. Высокомол. со-ед., сер. Б. 1980. Т.22, №8. С.595-599.

43. Chew С.Н., Gan М., Scott G. Eur. Polym. Sci. 1978. V.14, S.361-364.

44. Kresta J, Majer J. J. Appl. Polym. Sci. 1969. V.13, S. 1859-1871.

45. Sadramohaghegh G., Scott G. Polym. J. 1980. V.16, №11. S.1037-1042.

46. Pabiot J., Verdu J. Polym. Eng. and Sci. 1981. V.21, №1. S.32-38.

47. Забара М.Я., Чекарева Л.Б. Пластические массы. 1978. №5. С.29-30.

48. Fihamer L.T. Muanyagis gumi. 1977. №12. S.351-354.

49. Дуденков C.B., Калашникова С.А., Генин Н.Н. и др. Повышение эффективности заготовки, обработки, переработки и использования вторичных полимерных материалов. Обзорная информ. М., 1979. вып.9. 52с.

50. Cernansky A., Siroky R. Plasty a kauc. 1976. V.13, №12. S.360-364.

51. Овчинникова Г.П., Артеменко С.Е. Рециклинг вторичных полимеров: Учеб. пособие. Саратов, 2000. 21с.

52. Вильниц С.А., Вапна Ю.М. Пластические массы. 1974. №12. С. 1922.

53. Вильниц С.А., Вапна Ю.М. В кн.: Химия и технология высокомол. соед. М., 1980. Т. 15, С. 127-160.

54. Гуль В.Е. Структура и прочность полимеров. М., 1978. 328с.

55. Kunststoffe. 1976. В.66, №6. S.342-351; №8. S.480-487.

56. Mod. Plast. Int. 1975. V.5, №5. S.22-24.

57. Чурсина Т.В., Лебедева Е.Д., Осипчик B.C. Использование технологических отходов полиэтилена для получения концентрата технического углерода. Пластические массы. 1996. №3. С.29-30.

58. Любешкина Е.Г. Успехи химии. 1983. Т.52, №7. С. 1196-1224.

59. Любешкина Е.Г., Фридман М.Л., Березкин В.И., Гуль В.Е. Пластические массы. 1982. №1. С. 19-20.

60. Дмитриева Н.Р., Волков Т.И., Михалева Н.М. и др. Композиционные материалы на основе наполненного вторичного полиэтилена. Пластические массы. 1993. №6. С.36-39.

61. Раскин Е.Б., Владимиров С.В. и др. Технология изготовления торцевого паркета из вторичного термопласта и отходов древесины. Пластические массы. 1998. №2. С.44-46.

62. Лебедева Т.М., Шалацкая С.А. Переработка вторичного поливи-нилхлоридного сырья. Л., 1991. 21с.

63. Гржималовская Л.В., Мурогита Л.И. Переработка отходов при производстве изделий из пластизоля ПВХ. Л., 1988. С.26-29.

64. Wiessenkamper W. Kunststoff Textilabfalle als Sekundarrohstoff. Kunststoffen. 1978. B.68, №5. S.299-302.

65. Вольфсон С.А., Никольский В.Г. Твердофазное деформационное разрушение и измельчение полимерных материалов. Порошковые технологии. Высокомол. соед. сер.Б. 1994. Т.36, №6. С.1040-1056.

66. Ахметханов P.M., Кадыров Р.Г., Минскер К.С. Вторичная переработка отходов поливинилхлорида с использованием метода упруго-деформационного диспергирования. Пластические массы. 2002. №4. С.45-47.

67. Фридман М.Л. Специфика реологических свойств и переработки вторичных полимерных материалов / Тез. докл. I Всесоюзн. конф. Пути повышения эффективности использования вторичных полимерных ресурсов. 1985. 4.1. С.73.

68. Кравченко Б.В., Рувинская И.Н. В кн.: Производство и переработка пластмасс и синтетических смол. М., 1978. вып.4. С.28-31.

69. Артеменко С.Е., Овчинникова Г.П., Кононенко С.Г. и др. Использование технологических отходов АБС-пластика в автомобилестроении. Пластические массы. 1995. №3. С.44-45.

70. Kommunalwirtschaft. 1978. №4. S. 105-106.

71. Маленко С.К., Уманский Н.А., Левин B.C., Коростелев В.И. Пластические массы. 1978. №8. С.60-61.

72. Штурман А.А. Пластические массы. 1991. №3. С.53.

73. Бух Н.Н., Овчинникова Г.П., Артеменко С.Е., Ишанов Б.Р. Увеличение ресурса эксплуатации вторичного ПКА путем его модифицирования. Пластические массы. 1997. №1. С.37-39.

74. Юрханов В.Б., Воробьева Г. С.и др. Конструкционный материал на основе вторичных полиэтилена и полиэтилентерефталата. Пластические массы. 1998. №4. С.40-42.

75. Кузнецов С.В. Вторичные пластики: переработка отходов ПЭТФ бутылок. Пластические массы. 2001. №9. С.3-8.

76. Биндер Роберт Ф. Вторичная переработка ПЭТФ. Пластические массы. 2003. №1. С.3-4.

77. Рябинин Д.Д., Лукач Ю.Е. Червячные машины для переработки пластических масс и резиновых смесей. М.: Машиностроение, 1965. 362 с.

78. Балашов М.М., Левин А.Н. Исследование течения блочного полистирола «Д» и разработка конструкции реометра. Пластические массы. 1961. №1. С. 23-30.

79. Торнер Р.В. Теоретические основы переработки полимеров (механика процессов). -М.: Химия, 1977. 464с.

80. Клинков А.С. Исследование непрерывного процесса вальцевания полимерных материалов. Дисс. на соискание ученой степени кандидата технических наук. М.,1972.

81. Проектирование и расчет валковых машин для полимерных материалов: учеб. пособие / А.С. Клинков, В.И. Кочетов, М.В. Соколов, П.С. Беляев, В.Г. Однолько. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. 128с.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Правильная утилизация отходов - огромный шаг на пути улучшения экологии.

Существует не один способ переработки мусора.

Главная задача каждого из методов состоит в том, чтобы выполнить поставленную задачу, не допуская распространения вредных бактерий и микроорганизмов. При этом нужно минимизировать и выделяющиеся при самой утилизации вредные вещества.

Рассмотрим варианты уничтожения отходов и оценим, насколько каждый из них эффективен.

Захоронение отходов на полигонах

Полигоны служат для сбора и переработки мусора природным путем. На многих из них практикуется очень простая и понятная система утилизации: как только соберется определенный объем мусора, его закапывают. Мало того, что этот метод устаревший, он является бомбой замедленного действия, ведь есть такие материалы, которые не разлагаются десятилетиями.

Те немногие полигоны, которые имеют в своем распоряжении цеха по , работают следующим образом: приезжающие машины регистрируют на пункте пропуска. Там же измеряется объем кузова, чтобы определить стоимость утилизации; измеряется уровень радиации. Если он превышает допустимые нормы, машину не пропускают.

От пропускного пункта машина направляется в цех сортировки мусора. Сортировка происходит вручную: машина подает мусор на транспортировочную ленту, а работники оттуда выбирают бутылки, бумагу и т. д. Отсортированные материалы складывают в контейнеры без дна, из которых мусор попадает сразу в клетку и под пресс. Когда процесс окончен, оставшиеся отходы (не вошедшие ни в одну из категорий) также спрессовывают и отвозят непосредственно на свалку. Так как долго разлагающиеся материалы отсортированы, оставшийся мусор можно засыпать землей.

Пластиковые бутылки, картон и некоторые другие отходы покупаются предприятиями для производства. Например, из пластиковых бутылок и контейнеров изготовляют сетки для овощей, из стеклянных бутылок и осколков - новые изделия, из картона - туалетную бумагу.

Материалы, которые принимают на полигонах:

  • Бытовые отходы жилых домов, учреждений, предприятий, занимающихся торговлей пром- и продтоваров.
  • Отходы строительных организаций, которые могут быть приравнены к твердым бытовым отходам.
  • Могут приниматься промышленные отходы 4 класса опасности, если их количество не превышает третьей части принимаемого мусора.

Отходы, ввоз которых запрещен на полигон:

  • Строительный мусор 4 класса опасности, который содержит асбест, золу, шлаки.
  • Промышленный мусор 1, 2, 3 класса опасности.
  • Радиоактивные отходы.
  • Полигоны устраиваются согласно строгим санитарным нормам и только на тех участках, где риск заражения человека бактериями через воздушное или водное пространство сводится к минимуму. Занимаемая площадь рассчитана примерно на 20 лет.

Компостирование

Этот метод переработки знаком огородникам, которые для удобрения растений применяют перегнившие органические материалы. Компостирование отходов - метод утилизации, основанный на естественном разложении органических материалов.

Сегодня известен способ компостирования даже неотсортированного потока бытовых отходов.

Из мусора вполне реально получить компост, который впоследствии мог бы использоваться в сельском хозяйстве. В СССР было построено множество заводов, но прекратили они функционировать из-за большого количества тяжелых металлов в мусоре.

Сегодня технологии компостирования в России сводятся к сбраживанию неотсортированного мусора в биореакторах.

Полученный продукт нельзя использовать в сельском хозяйстве, поэтому он находит применение тут же, на свалках - им покрывают отходы.

Этот метод утилизации считается эффективным при условии, что завод оснащен высокотехнологичным оборудованием. Из отходов вначале удаляют металлы, аккумуляторы, а также пластик.

Преимущества мусоросжигания:

  • меньше неприятных запахов;
  • уменьшается количество вредных бактерий, выбросов;
  • полученная масса не привлекает грызунов и птиц;
  • есть возможность при сжигании получать энергию (тепловую и электрическую).

Недостатки:

  • дорогостоящее строительство и эксплуатация мусоросжигательных заводов;
  • строительство занимает не менее 5 лет;
  • при сжигании отходов в атмосферу попадают вредные вещества;
  • зола от мусоросжигания токсична и не может храниться на обычных свалках. Для этого нужны специальные хранилища.

По причине нехватки городских бюджетов, несогласованности с мусороперерабатывающими компаниями и по другим причинам в России пока не налажено производство мусоросжигающих заводов.

Пиролиз, его виды и преимущества

Пиролизом называют сжигание мусора в специальных камерах, препятствующих доступу кислорода . Есть два вида :

  • Высокотемпературный - температура сжигания в печи свыше 900°С.
  • Низкотемпературный - от 450 до 900°С.

При сравнении обычного сжигания как метода утилизации мусора и низкотемпературного пиролиза можно выделить следующие преимущества второго способа:

  • получение пиролизных масел, которые впоследствии используют при производстве пластмасс;
  • выделение пиролизного газа, который получают в достаточном количестве для обеспечения производства энергоносителей;
  • выделяется минимальное количество вредных веществ;
  • установки для пиролиза перерабатывают почти все виды бытовых отходов, но мусор предварительно должен быть отсортирован.

Высокотемпературный пиролиз в свою очередь имеет достоинства перед низкотемпературным:

  • не требуется сортировать отходы;
  • масса зольного остатка значительно меньше, и его можно использовать в промышленных и строительных целях;
  • при температуре горения свыше 900°С разлагаются опасные вещества, не попадая в окружающую среду;
  • полученные пиролизные масла не требуют очистки, так как они имеют достаточную степень чистоты.

Преимущества есть у каждого из методов переработки мусора, но все упирается в стоимость установок: чем эффективнее и выгоднее метод утилизации, тем дороже его установка и длиннее срок окупаемости. Несмотря на эти недостатки, государство стремится реализовать проекты по эффективной и безопасной переработке мусора, понимая: за этими технологиями будущее.

Аскарова Екатерина

Реферат с презентацией

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение

«Средняя общеобразовательная школа №6»

РЕФЕРАТ ПО ТЕХНОЛОГИИ на тему

«Новые технологии переработки бытовых

И отходов производства в современном мире »

(школьная научно-практическая конференция «_Живи Земля»)

Ученицы 10 класса

Аскаровой Екатерины Сергеевны

Руководитель Е.В. Широкова

Пелагиада

2013 г

Р Е Ц Е Н З И Я

на реферат ученицы 10 класса Аскаровой Екатерины по теме «Новые технологии переработки бытовых и отходов производства в современном мире».
Рецензент учитель технологии Широкова Е.В.

Представленный для составления отзыва и рецензирования реферат соответствует уровню учебно-исследовательской работы обучающегося по предметной области технология. Тема реферата является актуальной и посвящена одной из важных исследовательских проблем – созданию безопасных безотходных технологий в современном мире.

На основе изучения достаточно большого объема научно-исследовательской литературы в реферате обобщены результаты исследования экологических проблем техногенной деятельности человека. Рассмотрены пути решения экологических проблем загрязнения окружающей среды отходами производства в России и в мире.

Несомненным достоинством реферата является изучение перспективных технологий вторичного производства. Поскольку интенсивный путь решения глобальной экологической проблемы – это снижение ресурсоемкого производства и переход к малоотходным технологиям.

В целом работа соответствует, предъявленным требованиям по оформлению ученического реферата.

1.Введение. Экологические проблемы современной цивилизации ………. 3

2. Не превратить планету в свалку…………………………………………..

3. Утилизации отходов медицинских учреждений …………...

4. Современные технологии по переработке твердых бытовых отходов …

5. Создание и развитие безотходного производства в России……………..

6.Перспективные технологии вторичных пластмасс……………………….

7. Мировой опыт вторичных ресурсов производства……………………….

8.Заключение…………………………………………………………………...

9. Список литературы…………………………………………………………

Введение

Экологические проблемы современной цивилизации

В настоящее время хозяйственная деятельность человека все чаще становится основным источником загрязнения атмосферы и окружающей среды. В природную среду в больших количествах попадают газообразные, жидкие и твердые отходы производств. Различные химические вещества, находящиеся в отходах, попадая в почву, воздух или воду, переходят по экологическим звеньям из одной цепи в другую, попадают, в конце концов, в организм человека. На земном шаре невозможно найти место, где не присутствовали в той или иной концентрации загрязняющие вещества. Даже во льдах Антарктиды, где нет никаких промышленных производств, а люди живут только на небольших станциях, ученые обнаружили токсичные вещества промышленного происхождения. Их заносят сюда потоки атмосферного воздуха. Даже кратковременное воздействие некоторых из них на организм человека может вызвать головокружение, кашель, першение в горле, тошноту, рвоту. Попадание в организм человека токсичных веществ в больших концентрациях может привести к потере сознания, острому отравлению и даже смерти. Примером подобного действия могут служить смоги, образующиеся в крупных городах или аварийные выбросы токсических веществ промышленными предприятиями в атмосферу.

Используемые человечеством технологии ориентированы в первую очередь на использование невозобновляемых природных ресурсов. Это нефть, уголь, руды и т.п. При этом их использование технологически влечёт за собой нарушения в окружающем мире: уменьшается плодородие почв и количество пресной воды, загрязняется атмосфера.

За год в атмосферу только одного углекислого газа выбрасывается 5 млрд. тонн. В результате истончается озоновый слой, появляются озоновые дыры. В эти дыры устремляются ультрафиолетовые лучи, от которых у людей возникают раковые заболевания. Кислорода на Земле становится все меньше и меньше. А выхлопных газов заводов черной и химической промышленности, котельных, транспорта все больше и больше.

Ученые подсчитали, что каждый год во всем мире в водоемы попадает столько вредных веществ, что ими можно было бы заполнить 10 тыс. товарных поездов. Даже в водах Арктики нашли стиральный порошок.

Почва образуется медленно: для этого нужны сотни и даже тысячи лет. А вот разрушить ее можно очень быстро. За последние сто лет на Земле уничтожена примерно 1/4 часть всех плодородных почв.

Не превратим планету в свалку

Сегодня, используя сложившиеся технологии, человечество имеет разнообразнейшую структуру всевозможных отходов бытового и промышленного происхождения. Эти отходы, постепенно накапливаясь, превратились в настоящее бедствие. Самый распространенный до последнего времени способ борьбы с бытовыми отходами в городах - вывоз их на свалки - не решает проблему, а прямо скажем, усугубляет ее. Свалки - это не только эпидемиологическая опасность, они неизбежно становятся мощным источником биологического загрязнения. Главный компонент биогаза - метан - признан одним из виновников возникновения парникового эффекта, разрушения озонового слоя атмосферы и прочих бед глобального характера. В общей сложности из отходов в окружающую среду попадает более ста токсичных веществ. Нередко свалки горят, выбрасывая в атмосферу ядовитый дым.

Под полигоны для мусора на десятки лет отчуждаются громадные территории, их, безусловно, можно было бы использовать с большей пользой. И, наконец, чтобы обустроить полигон и содержать его на уровне современных экологических требований, нужны большие средства. Очень дорого обходится рекультивация закрытых (уже не действующих) полигонов. Это целый комплекс мер, цель которых - остановить вредное воздействие свалок на окружающую среду, в том числе на почву и подземные воды. Рекультивация всего лишь одного гектара мусорного полигона обходится сегодня в 6 миллионов рублей. Велики и транспортные расходы на перевозку отходов, поскольку свалки, как правило, располагаются далеко от города.

Количество накапливающегося мусора постоянно растет. Сейчас его на каждого горожанина приходится от 150 до 600 кг в год. Больше всего мусора производят в США (520 кг в год на одного жителя), в Норвегии, Испании, Швеции, Нидерландах – 200-300 кг, в Москве – 300-320 кг.

Для того чтобы в природной среде разложилась бумага, требуется от двух до десяти лет, консервная банка – более 90 лет, фильтр от сигареты – 100 лет, полиэтиленовый пакет – более 200 лет, пластмасса – 500 лет, стекло – более 1000 лет. Вспомните об этом, прежде чем бросить в лесу старый полиэтиленовый пакет или бутылку.

В составе современного бытового и промышленного мусора много крайне медленно разлагающихся пластмасс (полимерных материалов). С новыми полимерными материалами ситуация лучше – в их составе есть светочувствительные молекулярные группы, которые легко усваиваются микроорганизмами. Скорость разложения таких полимерных отходов

возрастает во много раз, отпадает необходимость их сжигания в высокотемпературных печах.

США остаются одной из самых «замусоренных» стран мира, там ежегодно образуется до 160 млн. мусора. Нагруженная этим мусором колонна десятитонных грузовиков растянулась бы от Земли до Луны, а 18 млрд. одноразовых пеленок, которые ежегодно выбрасывают американцы, можно протянуть от Земли до Луны 7 раз.

Экологически опасен пористый стайроформ, из которого делают одноразовые стаканы. Если расставить в ряд стаканы, использованные за год, они опояшут Землю по экватору 463 раза. Этот пластик не разлагается в природе, а при его производстве из дорогостоящей нефти в атмосферу выделяются хлоруглероды, разрушающие озоновый слой.

В США перерабатывают всего 20% мусора, остальное концентрируется на свалках. До 1/3 этого мусора составляет тара. На упаковку американцы расходуют 75% производимого стекла, 50% бумаги, 40% алюминия, 40% пластика, 8% стали. Каждый час американцы используют 2,5 млн. пластиковых бутылок. Правительства развитых стран начинают все большее внимание уделять вопросам охраны окружающей среды и поощряют создание соответствующих технологий. Развиваются системы очистки территорий от мусора и технологии его сжигания. Однако есть достаточно много причин считать, что технологии сжигания мусора являются тупиковыми. Уже в настоящее время затраты на сжигание 1 кг мусора составляют 65 центов. Если не перейти на другие технологии ликвидации отходов, то затраты будут расти. При этом следует иметь в виду, что необходимы такие новые технологии, которые со временем могли бы обеспечить, с одной стороны, потребительские запросы населения, а с другой стороны, сохранность окружающей среды.

Утилизация отходов медицинских учреждений

К сожалению, в нашей стране 90% отходов подвергаются захоронению (депонированию) на полигонах, хотя это связано с транспортными расходами и отчуждением больших территорий. Кроме того, полигоны зачастую не

соответствуют элементарным санитарно-гигиеническим требованиям и являются вторичными источниками загрязнения окружающей среды. Но

если от большинства отходов еще можно сравнительно безопасно избавиться путем депонирования, то некоторые их виды, например, медицинские

отходы, подлежат обязательной переработке. Они значительно отличаются от остальных отходов и требуют особого внимания. В них кроется опасность для человека, обусловленная прежде всего постоянным наличием в их

составе возбудителей различных инфекционных заболеваний, токсических, а нередко и радиоактивных веществ.

К 2005 году в мире, по обобщенным данным, их накопилось уже около 1,8 млрд. тонн, что составляет примерно 300 кг на каждого жителя планеты.

Особую опасность представляют инъекционные иглы и шприцы, поскольку неправильное обращение с ними после применения может привести к повторному использованию. По оценке ВОЗ, в 2000 году только в результате повторного использования шприцев были инфицированы:

  • 21 миллион человек - вирусом гепатита B (HBV) (32 % всех новых инфекций);
  • два миллиона человек - вирусом гепатита C (HCV) (40 % всех новых инфекций); и
  • по крайней мере 260 000 человек - ВИЧ (5 % всех новых инфекций).

Современные технологии по переработке твердых бытовых отходов

Наиболее перспективным способом решения проблемы городских свалок является переработка отходов. Получили развитие следующие основные направления в переработке: органическая масса используется для получения удобрений, текстильная и бумажная макулатура используется для получения новой бумаги, металлолом направляется в переплавку. Основной проблемой в переработке является сортировка мусора и разработка технологических процессов переработки.

Предлагаемые современные технологии позволяют одновременно решить проблему утилизации мусора и создать местные источники энергии. Таким образом, мусор вернется к нам не в виде разрастающихся свалок и загрязненной воды, а в виде электричества по проводам, тепла в батареях отопления или выращенных в теплицах овощей и фруктов

Предварительная сортировка. Этот технологический процесс предусматривает разделение твердых бытовых отходов на фракции на мусороперерабатывающих заводах вручную или с помощью автоматизированных конвейеров. Сюда входит процесс уменьшения размеров мусорных компонентов путем их измельчения и просеивания, а также извлечение более или менее крупных металлических предметов, например консервных банок. Отбор их как наиболее ценного вторичного сырья предшествует дальнейшей утилизации ТБО (например, сжиганию).

Санитарная земляная засыпка. Такой технологический подход к обезвреживанию твердых бытовых отходов связан с получением биогаза и последующим использованием его в качестве топлива. С этой целью бытовой мусор засыпают по определенной технологии слоем грунта толщиной 0,6м в

уплотненном виде. Биогазовые полигоны снабжены вентиляционными трубами, газодувками и емкостями для сбора биогаза.

Высокотемпературный пиролиз. Этот способ утилизации ТБО, по существу, есть не что иное, как газификация мусора. Технологическая схема этого способа предполагает получение из биологической составляющей (биомассы) отходов вторичного синтез-газа с целью использования его для получения пара, горячей воды, электроэнергии. Составной частью процесса высокотемпературного пиролиза являются твердые продукты в виде шлака, т. е. непиролизуемые остатки.

Сжигание. Это широко распространенный способ уничтожения твердых бытовых отходов, который широко применяется с конца XIX в. Сложность непосредственной утилизации ТБО обусловлена, с одной стороны, их исключительной многокомпонентностью, с другой - повышенными санитарными требованиями к процессу их переработки. В связи с этим сжигание до сих пор остается наиболее распространенным способом первичной обработки бытовых отходов. Сжигание бытового мусора, помимо снижения объема и массы, позволяет получать дополнительные энергетические ресурсы, которые могут быть использованы для централизованного отопления и производства электроэнергии.

Переработка горючих отходов. Предлагаемая технология газификации позволяет перерабатывать горючие отходы в закрытом реакторе с получением горючего газа. Могут быть переработаны отходы следующих типов:

  • горючая фракция твердых бытовых отходов (ТБО), выделенная при сортировке;
  • твердые промышленные отходы - нетоксичные твердые отходы, произведенные промышленными, торговыми и другими центрами, например: пластик, картон, бумага и т. д.;
  • твердые горючие продукты переработки автомобилей: большинство автомобильных пластиков, резина, пеноматериалы, ткань, дерево и т. д.;
  • сточные воды после осушения (наиболее эффективная переработка сточных вод достигается при использовании биотермической технологии);
  • сухая биомасса, такая как отходы деревообработки, опилки, кора и т. д.

Процесс газификации является модульной технологией. Ценным продуктом переработки является горючий газ, производимый в объеме от 85 до 100 м 3 в минуту. Газ может быть использован для производства тепло-/электроэнергии для сопутствующих производств или на продажу.

Переработка гниющих отходов. Органическая фракция ТБО, полученная в результате сортировки, а также отходы ферм и очистных сооружений могут быть подвергнуты анаэробной переработке с получением метана и компоста, пригодного для сельскохозяйственных и садоводческих работ.

Переработка органики происходит в реакторах, где бактерии, производящие метан, перерабатывают органическую субстанцию в биогаз и гумус.

Переработка использованных шин. Для переработки шин используется технология низкотемпературного пиролиза с получением электроэнергии, сорбента для очистки воды или высококачественной сажи, пригодной для производства автопокрышек.

Линии демонтажа старых автомобилей. Для переработки старых автомобилей используется технология промышленного демонтажа, позволяющая вторично использовать отдельные детали. Экономическая эффективность предприятия обеспечивается продажей автомобильных деталей и отсортированных материалов. Для эффективной эксплуатации завода в зависимости от транспортных тарифов в радиусе 25-30 км от завода должно быть в наличии 25 000 остовов старых автомобилей. В общем случае для завода требуется площадка, по крайней мере, 20 000 м 2 . Поставка линии промышленного демонтажа включает обучение рабочего персонала на площадке заказчика и в Западной Европе, обучение управлению предприятием и тренинг по организации сбора старых автомобилей и продаже запчастей и материалов.

Утилизация медицинских отходов. Предлагаемая технология очистки медицинских отходов стерилизует такие виды медицинских отходов как иглы, ланцеты, медицинские контейнеры, металлические зонды, стекло, биологические культуры, физиологические вещества, медикаменты, шприцы, фильтры, пузырьки, подгузники, катетеры, лабораторные отходы и т.д. Технология очистки медицинских отходов измельчает и стерилизует отходы, так что они превращаются в сухую, однородную пыль без запаха (гранулы диаметром 1-2 мм). Этот остаток является целиком инертным продуктом, не содержит микроорганизмов и не обладает бактерицидными свойствами. Остаток может быть утилизирован как обычные городские отходы или использован при ландшафтных работах.

Предлагаемые современные технологии позволяют одновременно решить проблему утилизации мусора и создать местные источники энергии. Таким образом, мусор вернется к нам не в виде разрастающихся свалок и загрязненной воды, а в виде электричества по проводам, тепла в батареях отопления или выращенных в теплицах овощей и фруктов.

Создание и развитие безотходного производства

Какие же существуют пути решения глобальной экологической проблемы загрязнения окружающей среды отходами прозводства? Создание даже самых совершенных очистных сооружений не может решить проблему охраны среды. Интенсивный путь решения глобальной экологической проблемы - это снижение ресурсоемкого производства и переход к малоотходным технологиям.

Безотходным производством, является такое производство, в котором все исходное сырье в конечном итоге превращается в ту или иную продукцию и которое при этом одновременно оптимизировано по технологическим,

экономическим и социально-экологическим критериям. Принципиальная новизна подобного подхода к дальнейшему развитию промышленного производства обусловлена невозможностью эффективно решать проблемы охраны окружающей среды и рационального использования природных ресурсов только путем совершенствования методов обезвреживания, утилизации, переработки или захоронения отходов. Концепция безотходного производства предусматривает необходимость включения в цикл использования сырьевых ресурсов сферу потребления. Другими словами, продукция после физического или морального износа должна возвращаться в сферу производства. Таким образом, безотходное производство представляет собой практически замкнутую систему, организованную по аналогии с природными экологическими системами, в основе функционирования которых лежит биогеохимический круговорот вещества.

Безотходное производство предполагает кооперирование производств с большим количеством отходов (производство фосфорных удобрений, тепловые электростанции, металлургические, горнодобывающие и обогатительные производства) с производством - потребителем этих отходов, например предприятиями строительных материалов. В этом случае отходы в полной мере отвечают определению Д. И. Менделеева, назвавшего их «пренебрегаемыми продуктами химических превращений, которые со временем становятся исходной точкой нового производства».

Вторичные ресурсы производства в России

Образование отходов в экономике России составляет 3,4 млрд тонн в год, в том числе 2,6 млрд тонн/год - промышленные отходы, 700 млн тонн/год - жидкие отходы птицеводства и животноводства, 35-40 млн тонн/год - ТБО, 30 млн т /год - осадки очистных сооружений. Средний уровень их использования составляет около 26 %, в том числе промотходы перерабатываются на 35 %, ТБО - на 3-4 %, остальные отходы практически не перерабатываются.

Низкий уровень использования отходов (за исключением их отдельных видов - лома черных и цветных металлов, а также достаточно качественных в сырьевом отношении видов макулатуры, текстильных и полимерных отходов) объясняется, главным образом, не отсутствием технологий, а тем, что переработка большей части отходов в качестве вторичного сырья характеризуется низкой рентабельностью или вообще нерентабельна.

По данным МПР России учтено 2,4 тыс. объектов размещения опасных отходов. Условия размещения таких отходов во многих случаях не соответствует действующим в России экологическим требованиям и принятым в мире стандартам. В итоге воздействие мест накопления и захоронения отходов на окружающую среду часто превышает установленные ПДК . Имеется немало примеров, когда такое превышение составляет десятки и сотни раз.

Множество различных отходов может быть использовано вторично. Для каждого типа сырья есть соответствующая технология переработки. Для разделения отходов на различные материалы используются различные виды сепарации , например, для извлечения металла - магнитная.

Большинство металлов целесообразно перерабатывать вторично. Ненужные либо же испорченные предметы, так называемый металлолом, сдаются на пункты приема вторсырья для последующей переплавки. Особо выгодна переработка цветных металлов (меди, алюминия, олова), распространённых технических сплавов (победит) и некоторых черных металлов (чугун). значительным количеством образования отходов в России;

Возможна вторичная переработка бумаги: старые бумаги вымачиваются, чистятся и измельчаются для получения волокон - целлюлозы . Дальше процесс идентичен процессу производства бумаги из лесоматериалов.

На сегодняшний день в правительстве рассматриваются предложения по созданию Российской системы вторичных ресурсов.

«Вторавторесурсы» - обеспечивающие сбор и прием выведенных из эксплуатации автомобилей, их дезагрегацию, первичную обработку и сбыт полученного в результате этого вторичного сырья, а также сбор и первичную переработку отходов, образующихся в результате эксплуатации автомобилей - автошин, аккумуляторов и аккумуляторных электролитов, промасленных фильтров, пластмассовых деталей;

«Втортехресурсы» - обеспечивающие сбор и прием вышедших из употребления сложной бытовой техники и радиоэлектронной аппаратуры (компьютерной техники, ксероксов, факсов, телевизоров, стиральных машин

и т. п.), их дегазагрегацию, первичную обработку и сбыт полученного при этом вторичного сырья;

«Вторресурсы» - обеспечивающие заготовку макулатуры, отходов упаковки из ламинированной бумаги, полимерной пленки и других полимерных отходов, ПЭТ-бутылок, текстильных отходов, стеклобоя и др. видов традиционного вторичного сырья.

Помимо этого, должны быть установлены производственные связи или партнерские отношения с уже функционирующими на рынке вторичного сырья системами «Ртутьсервис» (люминесцентные лампы и другие ртутьсодержащие отходы), «Вторнефтепродукт», «Вторчермет» и «Вторцветмет».

Реализация предложения по созданию Российской системы вторичных ресурсов позволит принципиальным образом изменить организационные, нормативно-правовые и экономические условия для заготовки и переработки вторичного сырья в России. Уровень использования основных видов вторичного сырья повысится через 5 лет после ввода в действие системы не менее чем на 30 %, по ряду позиций в 1,5-2 раза, снизятся потери природного сырья, содержащегося в отходах. Заметно снизится уровень загрязнения отходами окружающей природной среды.

Будут созданы новые рабочие места, что благоприятно скажется на социально-экономических показателях большинства регионов России.

Будет выполнено одно из условий для вступления России в ВТО (в части ратификации Директивы ЕС 1994 года № 62 «Об упаковке и отходах упаковки»).

Перспективные технологии вторичных пластмасс

Основным механическим способом переработки отходов ПЭТ является измельчение, которому подвергаются некондиционная лента, литьевые отходы, частично вытянутые или невытянутые волокна. Такая переработка позволяет получить порошкообразные материалы и крошку для последующего литья под давлением. Характерно, что при измельчении физико-химические свойства полимера практически не изменяются.

Предложенные технологии позволяют перерабатывать только незагрязнённые технологические отходы, оставляя незатронутой пищевую тару, как правило, сильно загрязненную белковыми и минеральными примесями, удаление которых сопряжено со значительными капитальными

затратами, что не всегда экономически целесообразно при переработке в среднем и малом масштабе.

Технология литья изделий из смесей вторичных полимеров. Измельченные полимерные отходы смешиваются для усреднения состава смеси. На стадии смешения добавляются необходимые (свето и термостабилизаторы, красители и т.п.). Подготовленная смесь подается в экструдер. Технология основана на заполнении специальной литьевой формы за счет давления создаваемого экструдером. На таком оборудовании сегодня изготавливают элементы декоративного ограждения (столбики, детали декоративного ограждения и т.п.), которые начинают использоваться в программе благоустройства городов. Например, столбики из полимерных отходов, отформованные «под чугунное литье» на порядок дешевле чугунных. Ассортимент изделий может быть самым разнообразным.

Технология прессования. Эта технология предполагает расплав полимера, его дозирование в пресс-форму, установленную на вертикальном гидравлическом прессе, прессование изделия и его охлаждение в форме . Достоинством данной технологии является использование относительно недорогого оборудования и пресс-форм. Однако эта технология предъявляет более высокие требования к исходному вторичному сырью, а именно, к его сортировке. По такой технологии из вторичного сырья изготавливают плиты напольного покрытия и транспортные поддоны.

Нетканые материалы. По оценкам западных экспертов от 60 до 70% вторичного ПЭТФ используют для производства волокна и нетканых материалов. В России сегодня перерабатывается в изделия не более 15% собираемого вторичного ПЭТФ, основная масса которого в виде «флексов» продается за пределы страны, большей частью в Китай. Низкий уровень переработки связан с высокой стоимостью импортного оборудования для производства волокна и нетканых материалов.
Сегодня производится оборудование для изготовления нетканых объемных материалов из термопластичных волокнообразующих полимеров (в том числе, вторичного ПЭТФ) по технологии аэродинамического распыления расплава. Воздушный поток формирует из расплава волокно и распыляет его на вращающийся коллектор-собиратель, на котором волокна термически скрепляются, и формируется нетканый объемный материал.

Материалы, полученные по такой технологии могут использоваться для изготовления сорбентов нефтепродуктов, различных фильтров для жидкостей, газов и аэрозолей, а также в качестве утеплителей для одежды, наполнителей для мебели и мягких игрушек.
Таким образом, все вышесказанное свидетельствует о том, что сегодня

существуют и уже используются в производстве отечественные технологии и оборудование, позволяющие производить высокорентабельную продукцию из полимерных отходов.

Мировой опыт вторичных ресурсов производства

В экономически развитых странах все меньше бытовых отходов вывозится на свалки и все больше перерабатывается промышленными способами. Самый эффективный из них - термический. Он позволяет почти в 10 раз снизить объем отходов, вывозимых на свалки, причем несгоревший остаток уже не содержит органических веществ, вызывающих гниение, самопроизвольное возгорание и опасность эпидемий.

На фоне снижения в последние 10 лет роли государства в управлении переработкой отходов в России в развитых странах мира, наоборот, наращивалась степень государственного воздействия в этой области. С целью снижения себестоимости продукции с использованием отходов введены налоговые льготы. Для привлечения инвестиций в создание производств по переработке отходов создана система льготных кредитов, в том числе частично возмещаемых и безвозмездных в случае неудачных решений. В целях стимулирования спроса на продукцию с использованием отходов в ряде стран накладываются ограничения на потребление продукции, изготавливаемой без использования отходов, наращиваются масштабы использования системы городского и муниципальных заказов на продукцию из отходов.

В Европе существует фирма, перерабатывающая вторично процессоры и извлекающая из них золото. Делается это примерно так: процессоры извлекаются из компьютеров и прочей техники и погружаются в химический раствор (в котором присутствует азот) в результате чего появляется осадок который в последствии переплавляется и становится золотыми слитками.

Ученые из Нидерландов представили последние разработки в сфере переработки отходов - улучшенную технологию, которая без предварительной сортировки, в рамках одной системы, разделяет и очищает все отходы, которые туда поступают, до первоначального сырья. Система полностью перерабатывает все виды отходов (медицинские, бытовые, технические) в закрытом цикле, без остатка. Сырье полностью очищается от примесей (вредных веществ, красителей и т. д.), пакуется и может быть использовано вторично. При этом система экологически нейтральна.

В Германии построен и протестирован TUV завод, который успешно работает по данной технологии 10 лет в тестовом режиме. На данный момент

правительство Нидерландов рассматривает вопрос о строительстве аналогичного завода на территории своей страны.

Аккумуляторы и батареи. На настоящий день все типы батарей, выпускаемые в Европе, могут быть переработаны независимо от того, перезаряжаемы они или нет. Для переработки не имеет значения, заряжена ли батарея, частично разряжена или разряжена целиком. После сбора батарей они подлежат сортировке и далее в зависимости от того, к какому типу они принадлежат, батареи отсылаются на соответствующий завод по переработке. К примеру, щелочные батареи перерабатываются в Великобритании, а никель-кадмиевые - во Франции. Переработкой батарей в Европе занимается около 40 предприятий.

Текстиль и обувь. Во многих странах Европы на мусоросборных площадках спальных районов, помимо контейнеров для сбора металла, пластика, бумаги и стекла, появились контейнеры для сбора использованной одежды, обуви и тряпи. Вся тряпь поступает в сортировочный центр. Здесь происходит отбор одежды, которая ещё может быть пригодна для использования, она впоследствии поступает в благотворительные ассоциации для малоимущих, церкви и красный крест. Непригодная одежда проходит тщательный отбор: отделяются все металлические и пластмассовые детали (пуговицы, змейки, кнопки и пр.), затем разделяют по типу ткани (хлопок, лен, полиэстер и т. д.). Например джинсовая ткань поступает на заводы по производству бумаги, где ткань измельчается и отмачивается, после этого процесс производства идентичен целлюлозному. Метод производства бумаги из ткани сохранился неизменным уже многие столетия и был завезен в Европу Марко Поло, когда он в первый раз посетил Китай. В результате получается два типа бумаги: 1. «Артистический» для акварели или гравюры со своей текстурой, прочностью и долговечностью. 2. Бумага для производства банкнот.

Обувь подвергается похожему процессу сортировки: подошва отделяется от верха, компоненты сортируются по типу материала, после чего поступают на предприятия по переработке резины, пластмассы и т. д. В этом своего успеха достигла инновационная компания спортивной одежды NIKE, в магазинах которой в США можно получить скидку, оставив свои сношенные кроссовки.

Заключение

Подлинная перспектива выхода из экологического кризиса – в изменении производственной деятельности человека, его образа жизни, его сознания. Научно-технический прогресс создаёт не только перегрузки для природы; в наиболее прогрессивных технологиях он даёт средства предотвращения негативных воздействий, создаёт возможности экологически чистого производства. Возникла не только острая необходимость, но и возможность изменить суть технологической цивилизации, придать ей природоохранительный характер. Одно из направлений такого развития – создание безопасных производств. Используя достижения науки, технологический прогресс может быть организован таким образом, чтобы отходы производства не загрязняли окружающую среду, а вновь поступали в производственный цикл как вторичное сырье. Пример дает сама природа: углекислый газ, выделяемый животными, поглощается растениями, которые выделяют кислород, необходимый для дыхания животных. Если учесть, что 98% исходного сырья современная промышленность переводит в отходы, то станет понятной необходимость задачи создания безотходного производства.

Экологически чистыми являются и некоторые альтернативные (по отношению к тепловым, атомным и гидроэлектростанциям) источники энергии. Необходим быстрейший поиск способов практического использования энергии солнца, ветра, приливов, геотермальных источников.

Экологическая ситуация вызывает необходимость оценивать последствия любой деятельности, связанной вмешательством в природную среду.

Еще Ф. Жолио-Кюри предупреждал: «Нельзя допустить, чтобы люди направляли на своё собственное уничтожение те силы природы, которые они сумели открыть и покорить».

Время не ждёт. Наша задача всеми доступными методами стимулировать всякую инициативу и предприимчивость, направленную на создание и внедрение новейших технологий, способствующих решению любых экологических проблем. Способствовать созданию большого числа контрольных органов, состоящих из высококвалифицированных специалистов, на основе чётко разработанного законодательства согласно международным соглашениям по экологическим проблемам. Постоянно доносить информацию до всех государств и народов по экологии посредством радио, телевидения и прессы, тем самым поднимать экологическое сознание людей и способствовать их духовно-нравственному возрождению согласно требованиям эпохи.

Человечество пришло к пониманию, что дальнейшее развитие технического прогресса невозможно без оценки влияния новых технологий на экологическую ситуацию. Новые связи, создаваемые человеком, должны быть замкнуты, чтобы обеспечить неизменность тех основных параметров планеты Земля, которые влияют на ее экологическую стабильность.

В заключении мне хочется напомнить высказывание Сен-Симона: «Счастливой будет та эпоха, в которой честолюбие начнёт видеть величие и славу только в приобретении новых знаний и покинет нечистые источники, которыми оно пыталось утолить свою жажду». То были источники бедствий и тщеславия, утолявшие жажду только невежд, героев завоевателей и истребителей человеческого рода.

Список литературы:

1. Горшков С.П. Экзодинамические процессы освоенных территорий. – М.: Недра, 1999.

2. Григорьев А.А. Города и окружающая среда. Космические исследования. – Мысль, 2002.

3. Никитин Д.П., Новиков Ю.В. Окружающая среда и человек. – 2007.

4. Одум Ю. Основы экологии. – Мир, 2004.

5. Радзевич Н.Н., Пашканг К.В. Охрана и преобразование природы. – Просвещение, 2005.

6. Самсонов А. Л. журнал «Экология и жизнь» – Г. Д. Сюнькова, 2000.

7. Миркин Б. М, Наумова Л. Г. Экология России, 2006.

Из-за стремительного развития промышленных производств человечество встает перед необходимостью использования новых технологий по утилизации отходов. Сегодня в России около 94% мусора просто оставляется на специальных полигонах. В Европе этот показатель тоже оставляет желать лучшего, пусть и является значительно меньшим (40%). Как же можно изменить сложившуюся ситуацию?

Сжигание

Данная сравнительно новая технология в переработке отходов может рассматриваться как достаточно эффективная лишь при соблюдении ряда обязательных условий. Так, для ее реализации понадобится наличие мусоросжигательных заводов, оснащенных по последнему слову техники. На строительство таких предприятий обычно уходит много денег и времени (свыше 5 лет). Перед непосредственным началом процесса мусор должен быть отсортирован. Из общей массы удаляются аккумуляторы, а также металлические и пластиковые составляющие.

Международные исследовательские организации отмечают у этого метода сразу ряд объективных плюсов, а именно:

  1. Практически полное отсутствие неприятных запахов.
  2. Малая доля выделяемых в атмосферу токсичных веществ. Исследования журнала «Waste Management» доказали, что мусоросжигание ежегодно провоцирует выброс в воздух только 3,4 г. диоксинов против 1300 г., которые наблюдаются при образовании свалок. Организация «UK Environmental Services Association» установила, что технология не вызывает мутаций в растениях, выращиваемых вблизи перерабатывающих заводов, а также не провоцирует у человека опухолевых заболеваний и недугов дыхательной системы.
  3. Возможность получения мощной тепловой и энергетической ресурсной базы. Это оказывается особенно актуальным при использовании пиролиза – технологии, при которой соединение низких или высоких температур (от 450 до 900° или более 900° соответственно) с недостаточным количеством кислорода приводит не к выделению вредных и ядовитых веществ, а к разложению предмета на составные элементы. В России данный способ пока находится на стадии разработки и экспериментальной проверки. Предполагается, что внедрение пиролиза в постоянную практику обеспечит теплом целые города с населением в 300000 человек. Сами предприятия будут способны служить жителям по 20 лет при среднем сроке окупаемости в 4 года. Их также не придется снабжать энергией для функционирования, ведь вырабатываемый в результате горения синтез-газ и станет топливом для реакторов.

Сжигание мусора также позволяет не образовывать многокилометровые развалы, к которым с окрестных территорий стягиваются птицы и грызуны – переносчики заразы и вирусов. Однако этот метод требует обязательной утилизации золы в специальные хранилища ввиду того, что, содержащая в себе некоторые примеси тяжелых металлов, диоксинов и ртути, она не может быть просто развеяна или оставлена на земле.

Плазменная переработка

Следующая новая технология по переработке отходов является одним из самых безопасных и инновационных решений, которое можно было найти в данном вопросе. Здесь также используется принцип обработки массы высокими температурами, однако сор доводится не до разложения, а до превращения в газ.

В таком состоянии бывшие предметы перегоняются в пар, благодаря чему получается сразу несколько полезных ресурсов:

  • электроэнергия;
  • экологически чистый шлак;
  • непиролизуемые остатки, которые могут вторично применяться в производственных целях.

Заводы, функционирующие на основе принципа плазменной переработки, имеют замкнутое и цикличное действие: так, их реакторам не нужна новая энергия, потому что они работают на части собственного тепла. Эта система не требует и предварительной сортировки и подготовки материала, т.к. она способна без вреда для природы и здоровья человека уничтожать любые отходы, уменьшая их изначальную массу более чем в 300 раз. Такой показатель не может продемонстрировать ни один из известных в настоящий момент методов утилизации. Использование плазмы отличается и минимальными затратами – избавление от 1 т. мусора оказывается в 3 раза более дешевым, чем при следовании любому другому способу. Именно поэтому плазматроны активно применяются в прогрессивных с технологической точки зрения странах – США, Великобритании, Японии, Китае.

Засыпка

Среди технологий по утилизации отходов можно найти и те, которые используются не столько в силу очевидных положительных критериев, сколько в силу экономической выгоды. Ярким примером нового способа подобного рода является засыпка полигона ТБО, в результате которой происходит образование синтеза газов – метана, диоксида углерода, азота, водорода, сероводорода и кислорода. Другими словами, свалка не просто оставляется на поверхности планеты на годы, а хоронится под слоем земли и глины на 10-30 лет. Спустя время происходит выработка неопасного природного свалочного газа, который затем применяется для производства топлива, пара, тепла и электроэнергии.

Важно! Реализация данного метода возможна только при наличии специальных глубоких котлованов, внутри которых должно быть установлено насосное оборудование для передачи газообразных продуктов разложения на предприятия.

Компостирование

Последняя новая технология переработки бытовых отходов отлично подходит для материалов органического происхождения – пищевых остатков, растительности, бумаги. Этот способ утилизации, не используемый в масштабной промышленности, является излюбленным у дачников и фермеров. Процесс компостирования заключается в формировании специальных куч разных размеров, которые подвергаются регулярному переворачиванию (ежедневному, 1 раз в месяц, 1 раз в год и т.д. в зависимости от пожеланий человека к длительности создания компоста).

Полученный в результате разложения в естественных климатических условиях продукт активно применяется как ценное удобрение при возделывании земель, высадке культур и насыщении почвы.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то