Что такое оптика? Оптика - это раздел физики, изучающий поведение и свойства света. Оптические приборы

Интерференция света – явление перераспределения светового потока в пространстве при наложении двух (или нескольких) когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности.

Когерентными называют волны, разность фаз которых не меняется ни в пространстве, ни во времени. Условие максимума интенсивности для разности фаз ; условие минимума

.

Для получения когерентных световых волн применяют методы разделения волны, излучаемой одним источником, на две части и более, которые после прохождения разных оптических путей накладываются друг на друга.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления n 1 прошла путь S 1 , вторая – в среде с показателем преломления n 2 – путь S 2 . Разность фаз колебаний, возбуждаемых волнами в точке М, равна

.

Произведение геометрической длины S пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L , а = (L 2 L 1 ) – разность оптических длин проходимых волнами путей – называется оптической разностью хода. Учтем, что /c=2v/c=2/ 0 , где  0 – длина волны в вакууме.

Условие интерференционного максимума : оптическая разность хода равна целому числу волн и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе = ± m , где (m = 0, 1, 2,...).

Условие интерференционного минимума : оптическая разность хода равна полуцелому числу волн и колебания, возбуждаемые в точке М волнами, будут происходить в противофазе
, где (m = 0, 1, 2,...).

Положение максимумов освещенности при наблюдении интерференции от щелей Юнга х max = ±т (l / d ) , где m – порядок максимума, d – расстояние между щелями, l – расстояние до экрана; минимумов x min = ± (m +1/2)(l / d ) .

Расстояние между двумя соседними минимумами, называемое шириной интерференционной полосы, равно x = (l / d ) .

Интерференция в тонких пленках :

оптическая разность хода

,

г
деn – относительный показатель преломления пленки, φ – угол падения света. Член ±/2 обусловлен потерей полуволны при отражении света от границы раздела. Если n > n 0 (n 0 – показатель преломления среды, в которой находится пленка), то потеря полуволны произойдет при отражении от верхней поверхности пленки, и вышеупомянутый член будет иметь знак минус, если же n < n 0 , то потеря полуволны произойдет на нижней поверхности пленки, и /2 будет иметь знак плюс.

Радиусы темных колец в отраженном и светлых колец Ньютона в проходящем свете
, гдеm = 1, 2,.. – номер кольца, R – радиус кривизны линзы.

Дифракция волны: огибание световой волной границ непрозрачных тел с образованием интерференционного перераспределения энергии по различным направлениям.

П
ринцип Гюйгенса-Френеля
: каждая точка фронта волны является источником волн, распространяющихся с характерной для данной среды скоростью. Огибающая этих волн дает положение фронта волны в следующий момент времени. Все точки фронта волны колеблются с одинаковой частотой и в одинаковой фазе и, следовательно, представляют собой совокупность когерентных источников. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства.

Дифракция Френеля (от сферического фронта волны).

Радиусы зон Френеля:
, гдеа –расстояние от источника до экрана, b – расстояние от экрана с отверстием до экрана наблюдения дифракции, m = 1,2,3...

Если через отверстие проходит четное число зон Френеля, то в центре дифракционной картины наблюдается темное пятно, если нечетное, то светлое.

Дифракция Фраунгофера (от плоского фронта волны).

Условие наблюдения минимумов дифракции от одной щели
(т = 1, 2, 3…).

Дифракционная решетка – система периодически повторяющихся неоднородностей.

Период решетки d – расстояние между осями двух соседних щелей.

Условие главных дифракционных максимумов от дифракционной решетки
, (т = 1, 2, 3…).

Угловая дисперсия решетки
она равна

Разрешающая способность дифракционной решетки определяет интервал δλ, при котором две близко стоящие длины волн спектра λ 1 и λ 2 воспринимаются как отдельные линии:
, где N общее количество щелей решетки, на которые попадает свет при дифракции.

Поляризованным называется свет, в котором направления колебаний светового вектора каким-то образом упорядочены. Плоскость, проходящая через направление колебаний светового вектора Е плоскополяризованной волны и направление распространения этой волны, называется плоскостью колебаний, а плоскость колебания вектора Н называется плоскостью поляризации. Плоскополяризованный свет является предельным случаем эллиптически поляризованного света - света, для которого вектор Е (вектор Н ) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается в прямую (при разности фаз , равной нулю или ), то имеем дело с рассмотренным выше плоскополяризованным светом, если в окружность (при =±/2 и равенстве амплитуд складываемых волн), то имеем дело с поляризованным по кругу светом.

Степенью поляризации называется величина
,где I max и I min - максимальная и минимальная интенсивности света, соответствующие двум взаимно перпендикулярным компонентам вектора Е. Для естественного света I max = I min и Р = 0, для плоскополяризованного I min = 0 и Р = 1.

Закон Малюса : I = I 0 cos 2 , где I 0 – интенсивность поляризованного света, падающего на анализатор; α – угол между плоскостями пропускания поляризатора и анализатора, I – интенсивность поляризованного света, вышедшего из анализатора.

При падении света на поверхность диэлектрика под углом, удовлетворяющим соотношению tgi B = n 21 , где n 21 - показатель преломления второй среды относительно первой, отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плоскости падения). Преломленный же луч при угле падения i B (угол Брюстера) поляризуется максимально, но не полностью.

Закон Брюстера : i B + β = π/2 , где β – угол преломления.

Со словом "оптика" мы сталкиваемся, например, когда проходим мимо торговой точки, в которой продаются очки. Также многие помнят, что изучали оптику в школе. Что такое оптика?

Оптика - это раздел физики, который изучает природу света, его свойства, закономерности распространения в различных средах, а также взаимодействие света с веществами. Чтобы лучше понять, что такое оптика, следует разобраться с тем, что такое свет.

Представления о свете в современной физике

Физика рассматривает привычный нам свет как сложное явление, имеющее двойственную природу. С одной стороны, свет считается потоком мельчайших частиц - квантов света (фотонов). С другой стороны, свет можно описать как вид электромагнитных волн, имеющих определенную длину.

Отдельные разделы оптики изучают свет как физическое явление с различных сторон.

Разделы оптики

  • Геометрическая оптика. Рассматривает законы распространения света, а также отражения и преломления световых лучей. Представляет свет как луч, распространяющийся в однородной среде прямолинейно (в этом его сходство с геометрическим лучом). Не учитывает волновую природу света.
  • Волновая оптика. Изучает свойства света как разновидности электромагнитных волн.
  • Квантовая оптика. Изучает квантовые свойства света (исследует фотоэффект, фотохимические процессы, лазерное излучение и т. д.)

Оптика в жизни человека

Изучая природу света и закономерности его распространения, человек использует полученные знания себе на пользу. Наиболее часто встречающиеся в окружающей жизни оптические приборы - это очки, микроскоп, телескоп, фотообъектив, а также оптико-волоконный кабель, используемый для прокладки ЛВС (об этом вы можете узнать в статье

Геометрическая оптика – предельно простой случай оптики. По сути, это упрощенная версия волновой оптики, которая не рассматривает и просто не предполагает таких явлений, как интерференция и дифракция. Тут все упрощено до предела. И это хорошо.

Основные понятия

Геометрическая оптика – раздел оптики, в котором рассматриваются законы распространения света в прозрачных средах, законы отражения света от зеркальных поверхностей, принципы построения изображений при прохождении света через оптические системы.

Важно! Все эти процессы рассматриваются без учета волновых свойств света!

В жизни геометрическая оптика, являясь крайне упрощенной моделью, тем не менее, находит широкое применение. Это как классическая механика и теория относительности. Произвести нужный расчет чаще всего гораздо легче в рамках классической механики.

Основное понятие геометрической оптикисветовой луч .

Отметим, что реальный световой пучок не распространяется вдоль линии, а имеет конечное угловое распределение, которое зависит от поперечного размера пучка. Геометрическая оптика пренебрегает поперечными размерами пучка.

Закон прямолинейного распространения света

Этот закон говорит нам о том, что в однородной среде свет распространяется прямолинейно. Иными словами, из точки А в точку Б свет движется по тому пути, который требует минимального времени на преодоление.

Закон независимости световых лучей

Распространение световых лучей происходит независимо друг от друга. Что это значит? Это значит, что геометрическая оптика предполагает, что лучи не влияют друг на друга. И распространяются так, будто других лучей и вовсе нет.

Закон отражения света

Когда свет встречается с зеркальной (отражающей) поверхностью, происходит отражение, то есть изменение направления распространения светового луча. Так вот, закон отражения гласит, что падающий и отраженный луч лежат в одной плоскости вместе с проведенной к точке падения нормалью. Причем угол падения равен углу отражения, т.е. нормаль делит угол между лучами на две равные части.

Закон преломления (Снеллиуса)

На границе раздела сред наряду с отражением происходит и преломление, т.е. луч разделяется на отраженный и преломленный.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .


Отношение синусов углов падения и преломления является постоянной величиной и равняется отношению показателей преломления этих сред. Еще эта величина называется показателем преломления второй среды относительно первой.

Здесь стоит отдельно рассмотреть случай полного внутреннего отражения. При распространении света из оптически более плотной среды в менее плотную угол преломления по величине больше угла падения. Соответственно, при увеличении угла падения будет увеличиваться и угол преломления. При некотором предельном угле падения угол преломления станет равным 90 градусов. При дальнейшем увеличении угла падения свет не будет преломляться во вторую среду, а интенсивность падающего и отраженного лучей будут равны. Это называется полным внутренним отражением.

Закон обратимости световых лучей

Представим, что луч, распространяясь в каком-то направлении, претерпел ряд изменений и преломлений. Закон обратимости световых лучей гласит, что если пустить навстречу этому лучу другой луч, то он пойдет по тому же пути, что и первый, но в обратном направлении.

Мы продолжим изучать основы геометрической оптики, а в будущем мы обязательно рассмотрим примеры решения задач на применение различных законов. Ну а если сейчас у вас имеются какие-либо вопросы, добро пожаловать за верными ответами к специалистам студенческого сервиса . Мы поможем решить любую задачу!

- (греч. optike наука о зрительных восприятиях, от optos видимый, зримый), раздел физики, в к ром изучаются оптическое излучение (свет), процессы его распространения и явления, наблюдаемые при вз ствии света и в ва. Оптич. излучение представляет… … Физическая энциклопедия

- (греч. optike, от optomai вижу). Учение о свете и действии его на глаз. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ОПТИКА греч. optike, от optomai, вижу. Наука о распространении света и действии его на глаз.… … Словарь иностранных слов русского языка

оптика - и, ж. optique f. < optike наука о зрении. 1. устар. Раек (род панорамы). Мак. 1908. Иль в стекла оптики картинные места Смотрю моих усадеб. Державин Евгению. Особенность зрения, восприятия чего л. Оптика глаз моих ограничена; в потемках все… … Исторический словарь галлицизмов русского языка

Современная энциклопедия

Оптика - ОПТИКА, раздел физики, в котором исследуются процессы излучения света, распространения его в различных средах и взаимодействия его с веществом. Оптика изучает видимую часть спектра электромагнитных волн и примыкающие к ней ультрафиолетовую… … Иллюстрированный энциклопедический словарь

ОПТИКА, раздел физики, исследующий свет и его свойства. Основные аспекты включают физическую природу СВЕТА, охватывающую как волны, так и частицы (ФОТОНЫ), ОТРАЖЕНИЕ, РЕФРАКЦИЮ, ПОЛЯРИЗАЦИЮ света и его передачу через различные среды. Оптика… … Научно-технический энциклопедический словарь

ОПТИКА, оптики, мн. нет, жен. (греч. optiko). 1. Отдел физики, наука, изучающая явления и свойства света. Теоретическая оптика. Прикладная оптика. 2. собир. Приборы и инструменты, действие которых основано на законах этой науки (спец.). Толковый… … Толковый словарь Ушакова

- (от греч. optike наука о зрительных восприятиях) раздел физики, в котором исследуются процессы излучения света, его распространение в различных средах и взаимодействие света c веществом. Оптика изучает широкую область спектра электромагнитных… … Большой Энциклопедический словарь

ОПТИКА, и, жен. 1. Раздел физики, изучающий процессы излучения света, его распространения и взаимодействия с веществом. 2. собир. Приборы и инструменты, действие к рых основано на законах этой науки. Волоконная оптика (спец.) раздел оптики,… … Толковый словарь Ожегова

ОПТИКА - (от греч. opsis зрение), учение о свете, составная часть физики. О. входит частью в область геофизики (атмосферная О., оптика морей и т. д.), частью в область физиологии (физиол.О.). По своему основному физ. содержанию О. разделяется на физи… … Большая медицинская энциклопедия

Книги

  • Оптика , А.Н. Матвеев. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Допущено Министерством высшего и среднего образования СССР в качестве учебногопособия для студентов…

Шемяков Н. Ф.

Физика. ч. 3. Волновая и квантовая оптика, строение атома и ядра, физическая картина мира.

Излагаются физические основы волновой и квантовой оптик, строение атома и ядра, физическая картина мира в соответствии с программой общего курса физики для технических вузов.

Особое внимание уделяется раскрытию физического смысла, содержания основных положений и понятий статистической физики, а также практическому применению рассматриваемых явлений с учетом выводов классической, релятивистской и квантовой механики.

Предназначено студентам 2-го курса дистанционного обучения, может использоваться студентами очной формы обучения, аспирантами и преподавателями физики.

С небес космические ливни заструились, Неся потоки позитронов на хвостах комет. Мезоны, даже бомбы появились, Каких там резонансов только нет...

7. ВОЛНОВАЯ ОПТИКА

1. Природа света

Согласно современным представлениям свет имеет корпускулярноволновую природу. С одной стороны, свет ведет себя подобно потоку частиц -фотонов , которые излучаются, распространяются и поглощаются в видеквантов. Корпускулярная природа света проявляется, например, в явлениях

фотоэффекта, эффекта Комптона. С другой стороны, свету присущи волновые свойства.Свет - электромагнитные волны. Волновая природа света проявляется, например, в явленияхинтерференции, дифракции, поляризации, дисперсии и др. Электромагнитные волны являются

поперечными.

В электромагнитной волне происходят колебания векторов

электрического поля E и магнитного поляH , а не вещества как, например, в случае волн на воде или в натянутом шнуре. Электромагнитные волны распространяются в вакууме со скоростью с 3 108 м/с.Таким образом, свет является реальным физическим объектом, который не сводится ни к волне, ни к частице в обычном смысле. Волны и частицы представляют собой лишь две формы материи, в которых проявляется одна и та же физическая сущность.

7.1. Элементы геометрической оптики

7.1.1. Принцип Гюйгенса

При распространении волн в среде, в том

числе и электромагнитных, для нахождения нового

фронта волны в любой момент времени

используют принцип Гюйгенса.

Каждая точка фронта волны является

источником вторичных волн.

В однородной изотропной среде волновые

поверхности вторичных волн имеют вид сфер

радиуса v t,

где v cкорость распространения

волны в среде.

Проводя огибающую волновых

фронтов вторичных волн, получаем новый фронт волны в данный момент времени (рис. 7.1, а, б).

7.1.2. Закон отражения

Используя принцип Гюйгенса можно доказать закон отражения электромагнитных волн на границе раздела двух диэлектриков.

Угол падения равен углу отражения. Лучи, падающий и отраженный, вместе с перпендикуляром к границе раздела двух диэлектриков, лежат в

к СД называют углом падения. Если в данный момент времени фронт падающей волны ОВ достигает т. О, то согласно принципу Гюйгенса эта точка

начинает излучать вторичную волну. За время

t = ВО1 /v падающий луч 2

достигает т. О1 . За это же время фронт вторичной

волны, после отражения в т. О, распространяясь в

той же среде, достигает точек полусферы,

радиусом ОА = v

t = BO1 .Новый фронт волны

изображен плоскостью АО1 , а направление

распространения

лучом ОА. Угол называют

углом отражения. Из равенства треугольников

ОАО1 и ОВО1 следует закон отражения: угол

падения равен углу отражения.

7.1.3. Закон преломления

Оптически однородная среда 1 характеризуется абсолютным

показателем преломления

скорость света в вакууме; v1

cкорость света в первой среде.

где v2

Отношение

n2 / n1 = n21

называют относительным показателем преломления второй среды относительно первой.

частот. Если скорость распространения света в первой среде v1 , а во второйv2 ,

среде (в соответствии с принципом Гюйгенса), достигает точек полусферы, радиус которой ОВ = v2 t. Новый фронт волны, распространяемой во второй среде, изображается плоскостью ВО1 (рис. 7.3), а направление ее

распространения лучами ОВ и О1 С (перпендикулярными к фронту волны). Угол между лучом ОВ и нормалью к границе раздела двух диэлектриков в

точке О называют углом преломления. Из треугольников ОАО1

ОВО1

следует, что АО1 =ОО1 sin

OB = OO1 sin .

Их отношение и выражает закон

преломления (закон Снеллиуса):

n21 .

Отношение синуса угла падения к синусу угла

преломления

относительному

показателю преломления двух сред.

7.1.4. Полное внутреннее отражение

Согласно закону преломления на границе раздела двух сред можно

наблюдать полное внутреннее отражение , если n1 > n2 , т. е.

7.4). Следовательно, существует такой предельный угол падения

пр , когда

900 . Тогда закон преломления

принимает следующий вид:

sin пр =

(sin 900 =1)

При дальнейшем

увеличении

полностью

отражается от границы раздела двух сред.

Такое явление называют полным внутренним отражением и широко используют в оптике, например, для изменения направления световых лучей (рис. 7. 5, а, б). Применяется в телескопах, биноклях, волоконной оптике и других оптических приборах. В классических волновых процессах, таких, как явление полного внутреннего отражения электромагнитных волн,

наблюдаются явления, аналогичные туннельному эффекту в квантовой механике, что связано с корпускулярно-волновыми свойствами частиц. Действительно, при переходе света из одной среды в другую наблюдается преломление света, связанное с изменением скорости его распространения в различных средах. На границе раздела двух сред луч света разделяется на два: преломленный и отраженный. Согласно закону преломления имеем, что если n1 > n2 , то при>пр наблюдается полное внутреннее отражение.

Почему это происходит? Решение уравнений Максвелла показывает, что интенсивность света во второй среде отлична от нуля, но очень быстро, по экспоненте, затухает при удалении от

границы раздела.

Экспериментальная

наблюдению

внутреннего

отражения приведена на рис. 7.6,

демонстрирует

проникновения

света в область, «запрещенную»,

геометрической оптикой.

прямоугольной

равнобедренной стеклянной призмы перпендикулярно падает луч света и, не преломляясь падает на грань 2, наблюдается полное внутреннее отражение,

/2 от грани 2 поместить такую же призму, то луч света пройдет через грань 2* и выйдет из призмы через грань 1* параллельно лучу, падавшему на грань 1. Интенсивность J прошедшего светового потока экспоненциально убывает с увеличением промежутка h между призмами по закону:

Следовательно, проникновение света в «запрещенную» область представляет собой оптическую аналогию квантового туннельного эффекта.

Явление полного внутреннего отражения действительно является полным, так как при этом отражается вся энергия падающего света на границу раздела двух сред, чем при отражении, например, от поверхности металлических зеркал. Используя это явление можно проследить еще одну

аналогию между преломлением и отражением света, с одной стороны, и излучением Вавилова-Черенкова, с другой стороны.

7.2. ИНТЕРФЕРЕНЦИЯ ВОЛН

7.2.1. Роль векторов E иH

На практике в реальных средах могут распространяться одновременно несколько волн. В результате сложения волн наблюдается ряд интересных явлений: интерференция, дифракция, отражение и преломление волн и т. д.

Эти волновые явления характерны не только для механических волн, но и электрических, магнитных, световых и т. д. Волновые свойства проявляют и все элементарные частицы, что было доказано квантовой механикой.

Одно из интереснейших волновых явлений, которое наблюдается при распространении в среде двух и более волн, получило название интерференции. Оптически однородная среда 1 характеризуется

абсолютным показателем преломления

скорость света в вакууме; v1 cкорость света в первой среде.

Среда 2 характеризуется абсолютным показателем преломления

где v2

скорость света во второй среде.

Отношение

называют относительным показателем преломления второй среды

используя теорию Максвелла, или

где 1 ,2 диэлектрические проницаемости первой и второй сред.

Для вакуума n = 1. Из-за дисперсии (частоты света

1014 Гц), например,

для воды n =1,33, а неn = 9 (= 81), как это следует из электродинамики для малых частот. Свет электромагнитные волны. Поэтому электромагнитное

поле определяется векторами E иH , характеризующими напряженности электрического и магнитного полей cоответственно. Однако во многих процессах взаимодействия света с веществом, например, таких, как воздействие света на органы зрения, фотоэлементы и другие приборы,

определяющая роль принадлежит вектору E , который в оптике называют световым вектором.

Все процессы, происходящие в приборах под влиянием света, вызваны действием электромагнитного поля световой волны на заряженные частицы, входящие в состав атомов и молекул. В данных процессах основную роль

играют электроны из-за большой частоты

колебаний

светового

15 Гц).

действующая

на электрон со

электромагнитного поля,

F qe { E

0 },

где q e

заряд электрона; v

его скорость;

магнитная проницаемость

окружающей среды;

магнитная постоянная.

Максимальное значение модуля векторного произведения второго

слагаемого при v

H , с учетом

0 Н2 =

0 Е2 ,

получается

0 Н vэ =

vэ Е

скорости света в

веществе и в вакууме соответственно;

0 электрическая

постоянная;

диэлектрическая проницаемость вещества.

Причем v >>vэ , так как скорость света в веществе v

108 м/c, a скорость

электрона в атоме vэ

106 м/c. Известно, что

циклическая частота; Ra

10 10

размер атома, играет роль

амплитуды вынужденных колебаний электрона в атоме.

Следовательно,

F ~ qe E , и основную роль играет вектор

E , а не

вектор H . Полученные результаты хорошо согласуются с данными опытов. Например, в опытах Винера области почернения фотоэмульсии под

действием света совпадают с пучностями электрического вектора E .

7.3. Условия максимума и минимума интерференции

Явление наложения когерентных световых волн, в результате которого наблюдается чередование усиления света в одних точках пространства и ослабления в других, называют интерференцией света.

Необходимым условием интерференции света является когерентность

складываемых синусоидальных волн.

Волны называют когерентными, если не изменяется с течением времени разность фаз складываемых волн, т. е. = const .

Этому условию удовлетворяют монохроматические волны, т.е. волны

E , складываемых электромагнитных полей совершались вдоль одного и того же или близких направлений. При этом должно происходить совпадение не

только векторов E , но иH , что будет наблюдаться лишь в том случае, если волны распространяются вдоль одной и той же прямой, т.е. являются одинаково поляризованными.

Найдем условия максимума и минимума интерференции.

Для этого рассмотрим сложение двух монохроматических, когерентных световых волн одинаковой частоты (1 =2 =), имеющих равные амплитуды (Е01 = Е02 = Е0 ), совершающих колебания в вакууме в одном направлении по закону синуса (или косинуса) , т. е.

Е01 sin(

01),

Е02 sin(

02),

где r1 , r2

расстояния от источников S1 и S2

до точки наблюдения на экране;

01, 02

начальные фазы; k =

волновое число.

Согласно принципу суперпозиции (установлен Леонардо да Винчи ) вектор напряженности результирующего колебания равен геометрической сумме векторов напряженности складываемых волн, т. е.

E 2 .

Для простоты положим, что начальные фазы складываемых волн

равны нулю, т. е. 01 =

02 = 0. По абсолютной величине, имеем

Е = Е1 + Е2 =2Е0 sin[

k(r1

k(r2

В (7.16) выражение

r1 ) n =

оптическая разность хода

складываемых волн; n

абсолютный показатель преломления среды.

Для других сред отличных от вакуума, например, для воды (n1 ,1 ),

стекла (n2 ,2 ) и т. д. k = k1 n1 ;

k = k2 n2 ;

1 n1 ;

2 n 2;

называют амплитудой результирующей волны.

Амплитуда мощности волны определяется (для единицы поверхности фронта волны) вектором Пойнтинга , т. е. по модулю

0 Е0 2 cos2 [

k(r2

где П = с w,

0E 2

объемная

плотность

электромагнитного поля (для вакуума

1), т. е. П = с

0 E2 .

Если J= П

интенсивность результирующей волны, а

J0 = с

0 E 0 2

максимальная интенсивность ее, то с учетом

(7.17) и (7.18) интенсивность

результирующей волны будет изменяться по закону

J = 2J0 {1+ сos}.

Разность фаз складываемых волн

и не зависит от времени, где

2 = t kr2 +

1 = t kr1 +

Амплитуду результирующей волны найдем по формуле

K(r2

r1 )n =

Возможны два случая:

1. Условие максимума.

Если разность фаз складываемых волн равна четному числу

1, 2, ... , то результирующая амплитуда будет максимальной,

E 02 E 012 E 022 2E 01E 02

Е0 = Е01 + Е02 .

Следовательно, амплитуды волн складываются,

а при их равенстве

(Е01 = Е02 )

результирующая амплитуда удваивается.

Результирующая интенсивность также максимальна:

Jmax = 4J0 .

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то