Дайте определение понятию высота нечеткого множества. Нечеткие множества и их особенности

Под четким множеством или просто множеством, обычно понимают некоторую совокупность определенных и различимых между собой объектов нашей интуиции и интеллекта мыслимую как единое целое. В данном высказывании отметим следующий момент: множество A есть совокупность определенных объектов. Это означает, что относительно любого х можно однозначно сказать, принадлежит ли он множеству A или нет.

Условие принадлежности элемента х множеству A можно записать, используя понятие функции принадлежности m(х), a именно

Следовательно, множество можно задать в виде совокупности пар: элемента и значения его функции принадлежности

A = {(х|m(х)} (1)

Пример 1. Кафедра предлагает пять элективных курсов x 1 , x 2 , x 3 , x 4 и x 5 . В соответствии с программой необходимо сд три курса. Студент выбрал для изучения курсы x 2 , х 3 и x 5 . Запишем этот факт с помощью функции принадлежности

где первый элемент каждой пары означает название курса, а второй - описывает факт принадлежности его к подмножеству выбранному данным студентом ("да" или "нет").

Примеров четких множеств можно привести бесконечно много: список студентов учебной группы, множество домов на данной улице города, множество молекул в капле воды и т.д.

Между тем, огромный объем человеческих знаний и связей с внешним миром включают такие понятия, которые нельзя назвать множествами в смысле (1). Их следует скорее считать классами с нечеткими границами, когда переход от принадлежности одному классу к принадлежности другому происходит постепенно, не резко. Тем самым предполагается, что логика человеческого рассуждения основывается не на классической двузначной логике, а на логике с нечеткими значениями истинности, - нечеткими связками и нечеткими правилами вывода . Вот несколько тому примеров: объем статьи примерно 12 страниц, большая часть территории, подавляющее превосходство в игре, группа из нескольких человек.

Остановимся на последнем примере. Ясно, что группа людей из 3, 5, или 9 человек принадлежит к понятию: "группа людей, состоящее из нескольких человек". Однако для них будет неодинаковой степень уверенности в принадлежности к этому понятию, которая зависит от различных, в том числе и от субъективных, обстоятельств. Формализовать эти обстоятельства можно, если предположить, что функция принадлежности может принимать любые значения на отрезке . Причем крайние значения предписываются в том случае, если элемент безусловно не принадлежит или однозначно принадлежит данному понятию. В частности, множество людей A из нескольких человек может быть описано выражением вида:


A = {(1½0), 2½0.1), 3½0.4), (4½1), (5½1), (6½1), (7½0.8), (8½0.3), (9½0.1), (a½0)

Приведем определение нечеткого множества, данное основателем теории нечетких множеств Л.А.Заде. Пусть х есть элемент конкретного универсального (так называемого базового) множества E. Тогда нечетким (размытым) множеством A заданным на базовом множестве E называют множество упорядоченных пар

A = {xúm A ((x)}, "x Î E,

где m A (х) - функция принадлежности , отображающая множество E в единичный интервал , т.е. m A (х): E ® .

Очевидно, что если область значений m A (х) ограничить двумя числами 0 и 1, то данное определение будет совпадать с понятием обычного (четкого) множества.

Функция принадлежности нечеткого множества может задаваться не только перечислением всех ее значений для каждого элемента базового множества, но и в виде аналитического выражения. Например, множество вещественных чисел Z очень близких к числу 2, может быть задано так:

Z = {xúm Z (x)}, "x Î R,

где m Z (x) = .

Множество же вещественных чисел Y, достаточно близких к числу 2, есть

Y = {xúm Y (x)}, "x Î R,

M Y Z (x) = .

Графическое изображение этих двух функций принадлежности дано на рис.3.9.

Определение. Нечеткое множество A называется нечетким подмножеством B , если и A и B заданы на одном и том же базовом множестве E и "x Î E: m A (x) £ m B (x), что обозначают как A Ì B .

Условия равенства двух нечетких множеств A и B , заданных на одном и том же базовом множестве E, имеет следующий вид

A = B или "х Î E: m A (x) = m B (x).

Замечание . Между разными по своей сути понятиями "нечеткости" и "вероятности" чувствуется некоторое сходство. Во-первых, эти понятия используются в задачах, где встречается неопределенность либо неточность наших знаний или же принципиальная невозможность точных предсказаний результатов решений. Во-вторых, интервалы изменения и вероятности и функции принадлежности совпадают:

и P Î и m A (x) Î .

Вместе с тем вероятность является характеристикой объективной и выводы, полученные на основе применения теории вероятностей, в принципе могут быть проверены на опыте.

Функция же принадлежности определяется субъективно, хотя обычно она отражает реальные соотношения между рассматриваемыми объектами. Об эффективности применения методов, основанных на теории нечетких множеств, обычно судят после получения конкретных результатов.

Если в теории вероятностей предполагается, что вероятность достоверного события равна единице, т.е.

то соответствующая сумма всех значений функции принадлежности может принимать любые значения от 0 до ¥.

Итак, чтобы задать нечеткое множество A необходимо определить базовое множество элементов E, и сформировать функцию принадлежности m A (х), являющуюся субъективной мерой уверенности, с которой каждый элемент x из E принадлежит данному нечеткому множеству A .

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Современную науку и технику невозможно представить без широкого применения математического моделирования, поскольку далеко не всегда могут быть поставлены натурные эксперименты, зачастую они слишком дороги и требуют значительного времени, во многих случаях они связаны с риском и большими материальными или моральными издержками. Сущность математического моделирования состоит в замене реального объекта его «образом» – математической моделью – и дальнейшим изучением модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Важнейшим требованием, предъявляемым к математической модели, является условие ее адекватность (правильного соответствия) изучаемому реальному объекту относительно выбранной системы его свойств. Под этим, прежде всего, понимается правильное количественное описание рассматриваемых свойств объекта. Построение таких количественных моделей возможно для простых систем.

Иначе дело обстоит со сложными системами. Для получения существенных выводов о поведении сложных систем необходимо отказаться от высокой точности и строгости при построении модели и привлекать при ее построении подходы, которые являются приближенными по своей природе. Один из таких подходов связан с введением лингвистических переменных, описывающих нечеткое отражение человеком окружающего мира. Для того чтобы лингвистическая переменная стала полноправным математическим объектом, было введено понятие нечеткого множества.

В теории четких множеств была рассмотрена характеристическая функция четкого множества в универсальном пространстве , равная 1, если элемент удовлетворяет свойству и, следовательно, принадлежит множеству , и равная 0 в противном случае. Таким образом, речь шла о четком мире (булевой алгебре), в котором наличие или отсутствие заданного свойства определяется значениями 0 или 1 («нет» или «да»).

Однако в мире нельзя все разделить только на белое и черное, истину и лож. Так, еще Будда видел мир, заполненный противоречиями, вещи могли быть истинны в некоторой степени и, в некоторой степени, ложны в то же самое время. Платон положил основу того, что станет нечеткой логикой, указывая, что имелась третья область (вне Истины и Лжи) где эти противоречия относительны.

Профессор Калифорнийского университета Заде опубликовал в 1965 статью «Нечеткие множества», в которой он расширил двузначную оценку 0 или 1 до неограниченной многозначной оценки выше 0 и ниже 1 в замкнутом интервале и впервые ввел понятие «нечеткого множества». Вместо термина «характеристическая функция» Заде использовал термин «функция принадлежности». Нечеткое множество (оставлено то же обозначение, что и для четкого множества) в универсальном пространстве через функцию принадлежности (то же обозначение, что и для характеристической функции) определяется следующим образом

Функция принадлежности чаще всего интерпретируется следующим образом: величина означает субъективную оценку степени принадлежности элемента нечеткому множеству , например, означает, что на 80% принадлежит . Следовательно, должны существовать «моя функция принадлежности», «твоя функция принадлежности», «функция принадлежности специалиста» и т. п. Графическое представление нечеткого множества диаграмма Венна представляет собой концентрические окружности рис. 1. Функция принадлежности нечеткого множества имеет колоколообразный график в отличие от прямоугольного характеристической функции четкого множества рис. 1.

Следует обратить внимание на связь четкого и нечеткого множеств. Два значения {0,1} характеристической функции принадлежат замкнутому интервалу значений функции принадлежности. Следовательно, четкое множество является частным случаем нечеткого множества, а понятие нечеткого множества является расширенным понятием, охватывающим и понятие четкого множества. Другими словами четкое множество является и нечетким множеством.

Нечеткое множество строго определяется с помощью функции принадлежности и не содержит какой-либо нечеткости. Дело в том, что нечеткое множество строго определяется с помощью оценочных значений замкнутого интервала , а это и есть функция принадлежности. В случае если универсальное множество состоит из дискретного конечного набора элементов, то исходя из практических соображений, указывают значение функции принадлежности и соответствующий элемент, используя знаки разделения / и +. Например, пусть универсальное множество состоит из целых чисел меньших 10, тогда нечеткое множество «малые числа» можно представить в виде

A=1/0 + 1/1 + 0,8/2 + 0,5/3 + 0,1/4

Здесь, например, 0,8/2 означает . Знак + обозначает объединение. При написании нечеткого множества в приведенном выше виде опускаются элементы универсального множества со значениями функции принадлежности, равными нулю. Обычно записывают все элементы универсального множества с соответствующими значениями функции принадлежности. Используется запись нечеткого множества, как в теории вероятностей,

Определение. В общем случае нечеткое подмножество универсального множества определяется как множество упорядоченных пар

1.1 Основные термины и определения

Понятие нечеткого множества - эта попытка математической формализации нечеткой информации для построения математических моделей. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно принадлежать к данному множеству с различной степенью. При таком подходе высказывания типа “такой-то элемент принадлежит данному множеству” теряют смысл, поскольку необходимо указать “насколько сильно” или с какой степенью конкретный элемент удовлетворяет свойствам данного множества.

Определение 1. Нечетким множеством (fuzzy set) на универсальном множестве U называется совокупность пар (), где - степень принадлежности элемента к нечеткому множеству . Степень принадлежности - это число из диапазона . Чем выше степень принадлежности, тем в большей мерой элемент универсального множества соответствует свойствам нечеткого множества.

Определение 2. Функцией принадлежности (membership function) называется функция, которая позволяет вычислить степень принадлежности произвольного элемента универсального множества к нечеткому множеству.

Если универсальное множество состоит из конечного количества элементов , тогда нечеткое множество записывается в виде . В случае непрерывного множества U используют такое обозначение

Примечание: знаки и в этих формулах означают совокупность пар и u.

Пример 1. Представить в виде нечеткого множества понятие “мужчина среднего роста”.

Решение: = 0/155+0.1/160 + 0.3/165 + 0.8/170 +1/175 +1/180 + 0.5/185 +0/180.

Определение 3. Лингвистической переменной (linguistic variable) называется переменная, значениями которой могут быть слова или словосочетания некоторого естественного или искусственного языка.

Определение 4. Терм–множеством (term set) называется множество всех возможных значений лингвистической переменной.

Определение 5. Термом (term) называется любой элемент терм–множества. В теории нечетких множеств терм формализуется нечетким множеством с помощью функции принадлежности.

Пример 2. Рассмотрим переменную “скорость автомобиля ”, которая оценивается по шкале “низкая ", "средняя ", "высокая ” и “очень высокая ".

В этом примере лингвистической переменной является “скорость автомобиля ”, термами - лингвистические оценки “низкая ", "средняя ", "высокая ” и “очень высокая ”, которые и составляют терм–множество.

Определение 6. Дефаззификацией (defuzzification) называется процедура преобразования нечеткого множества в четкое число.

В теории нечетких множеств процедура дефаззификации аналогична нахождения характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одноэкстремальными функциями принадлежности. Для многоэкстремальных функций принадлежности в Fuzzy Logic Toolbox запрограммированы такие методы дефаззификации:

Centroid - центр тяжести;

Bisector - медиана;

LOM (Largest Of Maximums) - наибольший из максимумов;

SOM (Smallest Of Maximums) - наименьший из максимумов;

Mom (Mean Of Maximums) - центр максимумов.

Определение 7. Дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Физическим аналогом этой формулы является нахождение центра тяжести плоской фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого множества. В случае дискретного универсального множества дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Определение 8. Дефаззификация нечеткого множества по методу медианы состоит в нахождении такого числа a, что .

Геометрической интерпретацией метода медианы является нахождения такой точки на оси абцисс, что перпендикуляр, восстановленный в этой точке, делит площадь под кривой функции принадлежности на две равные части. В случае дискретного универсального множества дефаззификация нечеткого множества по методу медианы осуществляется по формуле .

Определение 9. Дефаззификация нечеткого множества по методу центра максимумов осуществляется по формуле:

где G – множество всех элементов из интервала , имеющих максимальную степень принадлежности нечеткому множеству .

В методе центра максимумов находится среднее арифметическое элементов универсального множества, имеющих максимальные степени принадлежностей. Если множество таких элементов конечно, то формула из определения 9 упрощается к следующему виду:

где - мощность множества G.

В дискретном случае дефаззификация по методам наибольшего из максимумов и наименьшего из максимумов осуществляется по формулам и , соответственно. Из последних трех формулы видно, что если функция принадлежности имеет только один максимум, то его координата и является четким аналогом нечеткого множества.

Пример 3. Провести дефаззификацию нечеткого множества “мужчина среднего роста ” из примера 1 по методу центра тяжести.

Решение: Применяя формулу из определения 7, получаем:

Определение 10. Нечеткой базой знаний (fuzzy knowledge base) о влиянии факторов на значение параметра y называется совокупность логических высказываний типа:

ТО , для всех ,

где - нечеткий терм, которым оценивается переменная в строчке с номером jp ();

Количество строчек-конъюнкций, в которых выход y оценивается нечетким термом , ;

Количество термов, используемых для лингвистической оценки выходного параметра y.

С помощью операций (ИЛИ) и (И) нечеткую базу знаний из определения 10 перепишем в более компактном виде:

Определение 11. Нечетким логическим выводом (fuzzy logic inference) называется апроксимация зависимости с помощью нечеткой базы знаний и операций над нечеткими множествами.

Пусть - функция принадлежности входа нечеткому терму , , , , т. е. ; - функция принадлежности выхода y нечеткому терму , , т. е. . Тогда степень принадлежности конкретного входного вектора нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

где - операция максимума (минимума).

Нечеткое множество , соответствующее входному вектору , определяется следующим образом:

где - операция объединения нечетких множеств.

Четкое значение выхода y, соответствующее входному вектору определяется в результате деффаззификации нечеткого .

1.2. Свойства нечетких множеств

Определение 12. Высотой нечеткого множества называется верхняя граница его функции принадлежности: . Для дискретного универсального множества супремум становится максимумом, а значит высотой нечеткого множества будет максимум степеней принадлежности его элементов

Определение 13. нормальным, если его высота равна единице. Нечеткие множества не являющиеся нормальными называются субнормальными . Нормализация ‑ преобразование субнормального нечеткого множества в нормальное определяется так: . В качестве примера на рис. 1 показана нормализация нечеткого множества с функцией принадлежности .

Рисунок 1 - Нормализация нечеткого множества

Определение 14. Носителем нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют ненулевые степени принадлежности: .

Определение 15. Нечеткое множество называется пустым , если его носитель является пустым множеством.

Определение 16. Ядром нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности равные единице: . Ядро субнормального нечеткого множества пустое.

Определение 17. - сечением (или множеством -уровня) нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности большие или равные : , . Значение называют -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) -уровне.

Рис. 2 иллюстрирует определения носителя, ядра, - сечения и - уровня нечеткого множества.

Рисунок 2 - Ядро, носитель и - сечение нечеткого множества

Определение 18. Нечеткое множество называется выпуклым если: , , . Альтернативное определение: нечеткое множество будет выпуклым , если все его - сечения - выпуклые множества. На рис. 3 приведены примеры выпуклого и невыпуклого нечетких множеств.

Рисунок 3 - К определению выпуклого нечеткого множества

Определение 19. Нечеткие множества и равны () если .

1.3. Операции над нечеткими множеств

Определения нечетких теоретико-множественных операций объединения, пересечения и дополнения могут быть обобщены из обычной теории множеств. В отличие от обычных множеств, в теории нечетких множеств степень принадлежности не ограничена лишь бинарной значениями 0 и 1 ‑ она может принимать значения из интервала . Поэтому, нечеткие теоретико-множественные операции могут быть определены по-разному. Ясно, что выполнение нечетких операций объединения, пересечения и дополнения над не нечеткими множествами должно дать такие же результаты, как и при использование обычных канторовских теоретико-множественных операций. Ниже приведены определения нечетких теоретико-множественных операций, предложенных Л. Заде.

Определение 20. Дополнением нечеткого множества заданного на называется нечеткое множество с функцией принадлежности для всех . На рис. 4 приведен пример выполнения операции нечеткого дополнения.

Рисунок 4 - Дополнение нечеткого множества

Определение 21. Пересечением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения минимума также обозначается знаком , т.е. .

Определение 22. Объединением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения максимума также обозначается знаком , т.е. .

Обобщенные определения операций нечеткого пересечения и объединения - треугольной нормы (t-нормы) и треугольной конормы (t-конормы или s-нормы) приведены ниже.

Определение 23. Треугольной нормой (t-нормой)

Наиболее часто используются такие t-нормы: пересечение по Заде ‑ ; вероятностное пересечение ‑ ; пересечение по Лукасевичу ‑ . Примеры выполнения пересечения нечетких множеств с использованием этих t-норм показаны на рис. 5.

Рисунок 5 - Пересечение нечетких множеств с использованием различных t-норм

Определение 25. Треугольной конормой (s-нормой) называется бинарная операция на единичном интервале , удовлетворяющая следующим аксиомам для любых :

Наиболее часто используются такие s-нормы: объединение по Заде ‑ ; вероятностное объединение ‑ ; объединение по Лукасевичу ‑ . Примеры выполнения объединения нечетких множеств с использованием этих s-норм показаны на рис. 6.

Наиболее известные треугольные нормы приведены в табл. 1.

Рисунок 6 - Объединение нечетких множеств с использованием различных s-норм

Таблица 1 - Примеры треугольных норм

Параметр

1.4. Нечеткая арифметика

В этом разделе рассматриваются способы расчета значений четких алгебраических функций от нечетких аргументов. Материал основывается на понятиях нечеткого числа и принципа нечеткого обобщения. В конце раздела приводятся правила выполнения арифметических операций над нечеткими числами.

Определение 25. Нечетким числом называется выпуклое нормальное нечеткое множество с кусочно-непрерывной функцией принадлежности, заданное на множестве действительных чисел. Например, нечеткое число "около 10" можно задать следующей функцией принадлежности: .

Определение 26. Нечеткое число называется положительным (отрицательным) если , ().

Определение 27. Принцип обобщения Заде. Если ‑ функция от n независимых переменных и аргументы заданы нечеткими числами , соответственно, то значением функции называется нечеткое число с функцией принадлежности:

Принцип обобщения позволяет найти функцию принадлежности нечеткого числа, соответствующего значения четкой функции от нечетких аргументов. Компьютерно-ориентированная реализация принципа нечеткого обобщения осуществляется по следующему алгоритму:

Шаг 1. Зафиксировать значение .

Шаг 2. Найти все n-ки , , удовлетворяющие условиям и , .

Шаг 3. Степень принадлежности элемента нечеткому числу вычислить по формуле: .

Шаг 4. Проверить условие "Взяты все элементы y?". Если "да", то перейти к шагу 5. Иначе зафиксировать новое значение и перейти к шагу 2.

Шаг 5. Конец.

Приведенный алгоритм основан на представлении нечеткого числа на дискретном универсальном множестве, т.е. . Обычно исходные данные , задаются кусочно-непрерывными функциями принадлежности: . Для вычисления значений функции аргументы , дискретизируют, т.е. представляют в виде . Число точек выбирают так, чтобы обеспечить требуемую точность вычислений. На выходе этого алгоритма получается нечеткое множество, также заданное на дискретном универсальном множестве. Результирующую кусочно-непрерывную функцию принадлежности нечеткого числа получают как верхнюю огибающую точек .

Пример 4. Нечеткие числа и заданы следующими трапециевидными функциями принадлежности:

Необходимо найти нечеткое число с использованием принципа обобщения из определения 27.

Зададим нечеткие аргументы на четырех точках (дискретах): {1, 2, 3 4} для и {2, 3, 4 8} для . Тогда: и . Процесс выполнения умножения над нечеткими числами сведен в табл. 2. Каждый столбец таблицы соответствует одной итерации алгоритма нечеткого обобщения. Результирующее нечеткое множество задано первой и последней строчками таблицы. В первой строке записаны элементы универсального множества, а в последней строке - степени их принадлежности к значению выражения . В результате получаем: . Предположим, что тип функция принадлежности будет таким же, как и аргументов и , т. е. трапециевидной. В этом случае функция принадлежности задается выражением: . На рис. 7 показаны результаты выполнения операции с представлением нечетких множителей на 4-х дискретах. Красными звездочками показаны элементы нечеткого множества из табл. 2, а тонкой красной линией - трапециевидная функция принадлежности.

Исследуем, как измениться результат нечеткого обобщения при увеличении числа дискрет, на которых задаются аргументы. Нечеткое число при задании аргументов и на 30 дискретах приведено на рис. 7. Синими точками показаны элементы нечеткого множества , найденные по принципу обобщения, а зеленой линией - верхняя огибающая этих точек ‑ функция принадлежности . Функция принадлежности результата имеет форму криволинейной трапеции, немного выгнутой влево.

Таблица 2 - К примеру 4

1 , где. По -сечения нечеткого множества, а жирной синей линией -кусочно-линейная аппроксимация функции принадлежности нечеткого числа

По традиции четкие множества принято иллюстрировать кругами с резко оконтуренными границами. Нечеткие же множества – это круги, образованные отдельными точками: в центре круга точек много, а ближе к периферии их густота уменьшается до нуля; круг как бы растушевывается на краях. Такие «нечеткие множества» можно увидеть... в тире – на стене, куда вывешиваются мишени. Следы от пуль образуют случайные множества, математика которых известна. Оказалось, что для оперирования нечеткими множествами годится уже давно разработанный аппарат случайных множеств...

Понятие нечеткого множества – попытка математической формализации нечеткой информации с целью ее использования при построении математических моделей сложных систем. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно, принадлежать данному множеству с различной степенью.

Один из простейших способов математического описания нечеткого множества – характеризация степени принадлежности элемента множеству числом, например, из интервала . Пусть Х – некоторое множество элементов. В дальнейшем мы будем рассматривать подмножества этого множества.

Нечетким множеством А в Х называется совокупность пар вида (x, m A (x) ), где xÎX, а m А – функция x ® , называемая функцией принадлежности (membership function) нечеткого множества А . Значение m A (x) этой функции для конкретного x называется степенью принадлежности этого элемента нечеткому множеству А .

Как видно из этого определения, нечеткое множество вполне описывается своей функцией принадлежности, поэтому мы часто будем использовать эту функцию как обозначение нечеткого множества.

Обычные множества составляют подкласс класса нечетких множеств. Действительно, функцией принадлежности обычного множества B ÌX является его характеристическая функция: m В (x) =1, если x ÎB и m В (x) =0, если x ÏB. Тогда в соответствии с определением нечеткого множества обычное множество В можно также определить как совокупность пар вида (x, m В (x) ). Таким образом, нечеткое множество представляет собой более широкое понятие, чем обычное множество, в том смысле, что функция принадлежности нечеткого множества может быть, вообще говоря, произвольной функцией или даже произвольным отображением.

Мы говорим нечеткое множество . А множество чего? Если быть последовательным, то приходится констатировать, что элементом нечеткого множества оказывается... новое нечеткое множество новых нечетких множеств и т.д. Обратимся к классическому примеру – к куче зерна . Элементом этого нечеткого множества будет миллион зерен , например. Но миллион зерен это никакой не четкий элемент , а новое нечеткое множество . Ведь считая зерна (вручную или автоматически), немудрено и ошибиться – принять за миллион 999 997 зерен, например. Тут можно сказать, что элемент 999 997 имеет значение функции принадлежности к множеству “миллион”, равное 0.999997. Кроме того, само зерно – это опять же не элемент, а новое нечеткое множество: есть полноценное зерно, а есть два сросшихся зерна, недоразвитое зерно или просто шелуха. Считая зерна, человек должен какие-то отбраковывать, принимать два зерна за одно, а в другом случае одно зерно за два. Нечеткое множество не так-то просто запихнуть в цифровой компьютер с классическими языками: элементами массива (вектора) должны быть новые массивы массивов (вложенные вектора и матрицы, если говорить о Mathcad ). Классическая математика четких множеств (теория чисел, арифметика и т.д.) – это крюк, с помощью которого человек разумный фиксирует (детерминирует) себя в скользком и нечетком окружающем мире. А крюк, как известно, – инструмент довольно грубый, нередко портящий то, за что им цепляются. Термины, отображающие нечеткие множества – «много», «слегка», «чуть-чуть» и т.д. и т.п., – трудно «запихнуть» в компьютер еще и потому, что они контекстно зависимы . Одно дело сказать «Дай мне немного семечек» человеку, у которого стакан семечек, а другое дело – человеку, сидящему за рулем грузовика с семечками.



Нечеткое подмножество А множества Х характеризуется функцией принадлежности m A : Х→ , которая ставит в соответствие каждому элементу x ÎX число m A (x) из интервала , характеризующее степень принадлежности элемента х подмножеству А . Причем 0 и 1 представляют соответственно низшую и высшую степень принадлежности элемента к определенному подмножеству.

Дадим основные определения.

· Величина sup m A (x ) называется высотой нечеткого множества A . Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности равна 1. При sup m A (x )<1 нечеткое множество называется субнормальным.

· Нечеткое множество называется пустым , если его функция принадлежности равна нулю на всем множестве Х , т.е. m 0 (x)= 0 " x ÎX .

Нечеткое множество пусто , если " x ÎE m A (x )=0 . Непустое субнормальное множество можно нормализовать по формуле

(рис. 1).

Рис.1. Нормализация нечеткого множества с функцией принадлежности. .

Носителем нечеткого множества А (обозначение supp A ) с функцией принадлежности m A (x) называется множество вида suppA ={x|x ÎX, m A (x)> 0}. Для практических приложений носители нечетких множеств всегда ограничены. Так, носителем нечеткого множества допустимых режимов для системы может служить четкое подмножество (интервал), для которого степень допустимости не равна нулю (рис.2).

Рис. 3. Ядро, носитель и α- сечение нечеткого множества

Значение α называют α -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) α -уровне.

Рис. 3 иллюстрирует определения носителя, ядра, α- сечения и α- уровня нечеткого множества.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то