Основные слои атмосферы земли в порядке возрастания. Слои атмосферы — тропосфера, стратосфера, мезосфера, термосфера и экзосфера Верхняя граница стратосферы находится на высоте

Выше тропосферы расположена стратосфера (от греческого «стратиум» - настил, слой). Её масса составляет 20% от массы атмосферы.

Верхняя граница стратосферы расположена от поверхности Земли на высоте:

В тропических широтах (экваторе) 50 – 55 км.:

В умеренных широтах до 50 км.;

В полярных широтах (полюсах) 40 – 50 км.

В стратосфере воздух по мере подъёма нагревается, при этом температура воздуха повышается с высотой в среднем на 1 – 2 градуса на 1 км. подъёма и достигает на верхней границе до +50 0 С.

Повышение температуры с высотой обусловлено главным образом озоном, который поглощает ультрафиолетовую часть солнечной радиации. На высоте 20 – 25 км от поверхности Земли расположен очень тонкий (всего несколько сантиметров) озоновый слой.

Стратосфера очень бедна на водяной пар, здесь не бывает осадков, хотя иногда на высоте 30 км. образуются облака.

На основе наблюдений в стратосфере установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особо опасны для высокоскоростных летательных аппаратов.

Сильные ветры, называемые струйными течениями дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и появляются в верхних слоях тропосферы, но их скорость быстро уменьшается с понижением высоты.

Возможно, часть энергии, поступающей в стратосферу (главным образом затрачиваемой на образования озона) связано атмосферными фронтами, где обширные потоки стратосферного воздуха были зарегистрированы существенно ниже тропопаузы, а тропосферный воздух вовлекается в нижние слои стратосферы.

Мезосфера

Выше стратопаузы расположена мезосфера (от греческого «мезос» - средний).

Верхняя граница мезосферы расположена на высоте от поверхности Земли:

В тропических широтах (экваторе) 80 – 85 км.;

В умеренных широтах до 80 км.;

В полярных широтах (полюсах) 70 – 80 км.

В мезосфере температура понижается до – 60 0 С. – 1000 0 С. на её верхней границе.

В полярных регионах летом в мезопаузе часто появляются облачные системы, которые занимают большую площадь, но имеют незначительное вертикальное развитие. Такие светящиеся по ночам облака часто позволяют обнаруживать крупномасштабные волнообразные движения воздуха в мезосфере. Состав этих облаков, источники влаги и ядер конденсации, динамика и связь с метеорологическими факторами пока ещё недостаточно изучены.

Термосфера

Выше мезопаузы расположена термосфера (от греческого «термос» - тёплый).

Верхняя граница термосферы расположена на высоте от поверхности Земли:

В тропических широтах (экваторе) до 800 км.;

В умеренных широтах до 700 км.;

В полярных широтах (полюсах) до 650 км.

В термосфере температура снова повышается, достигая в верхних слоях 2000 0 С.

Необходимо заметить, что высотах 400 – 500 км. и выше температура воздуха не может быть определена ни одним из известных методов, вследствие чрезвычайного разряжения атмосферы. О температуре воздуха на таких высотах приходится судить по энергии газовых частиц, перемещающихся в газовых потоках.

Повышение температуры воздуха в термосфере связано с поглощением ультрафиолетового излучения и образованием ионов и электронов в атомах и молекулах газов содержащихся в атмосфере.

В термосфере давление и, следовательно, плотность газа с высотой постепенно уменьшается. В близи земной поверхности в 1 м 3 . воздуха содержится около 2,5х10 25 молекул, на высоте около 100 км в нижних слоях термосферы в 1 м 3 воздуха содержится около 2,5х10 25 молекул. На высоте 200 км., в ионосфере в 1 м 3 . воздуха содержится 5х10 15 молекул. На высоте около 850 км. в 1м. воздуха содержится 10 12 молекул. В межпланетном пространстве концентрация молекул составляет 10 8 - 10 9 на 1 м 3 . На высоте около 100 км. количество молекул невелико, но они редко сталкиваются между собой. Среднее расстояние, которое преодолевает хаотически двигающаяся молекула до столкновения с другой такой же молекулой, называется её средним свободным пробегом.

При определённой температуре скорость движения молекулы зависит от массы: более лёгкие молекулы движутся быстрее тяжёлых. В нижней атмосфере, где свободный пробег очень короткий, не наблюдается заметного разделения газов по их молекулярному весу, но оно выражено выше 100 км. Кроме этого, под воздействием ультрафиолетового и рентгеновского излучения Солнца молекулы кислорода распадаются на атомы, масса которых составляет половину массы молекулы. Поэтому по мере удаления от поверхности Земли атмосферный кислород приобретает всё большее значение в составе атмосферы на высоте около 200 км. становится главным компонентом.

Выше, приблизительно на расстоянии 1200 км. от поверхности Земли преобладают лёгкие газы гелий и водород. Из них и состоит внешняя оболочка атмосферы.

Такое расширение по весу называется диффузным расширением, напоминает разделение смесей с помощью центрифуги.

Уровень моря - 101,3 кПа (1 атм.; 760 мм рт. ст атмосферного давления), плотность среды 2,7·1019 молекул на см³.
0,5 км - до этой высоты проживает 80 % человеческого населения мира.
2 км - до этой высоты проживает 99 % населения мира.
2-3 км - начало проявления недомоганий (горная болезнь) у неакклиматизированных людей.
4,7 км - МФА требует дополнительного снабжения кислородом для пилотов и пассажиров.
5,0 км - 50 % от атмосферного давления на уровне моря.
5,3 км - половина всей массы атмосферы лежит ниже этой высоты (немного ниже вершины горы Эльбрус).
6 км - граница постоянного обитания человека, граница наземной жизни в горах.
6,6 км - самая высоко расположенная каменная постройка (гора Льюльяильяко, Южная Америка).
7 км - граница приспособляемости человека к длительному пребыванию в горах.
8,2 км - граница смерти без кислородной маски: даже здоровый и тренированный человек может в любой момент потерять сознание и погибнуть.
8,848 км - высочайшая точка Земли гора Эверест - предел доступности пешком.
9 км - предел приспособляемости к кратковременному дыханию атмосферным воздухом.
12 км - дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10-20 с); предел кратковременного дыхания чистым кислородом без дополнительного давления; потолок дозвуковых пассажирских лайнеров.
15 км - дыхание чистым кислородом эквивалентно пребыванию в космосе.
16 км - при нахождении в высотном костюме в кабине нужно дополнительное давление. Над головой осталось 10 % атмосферы.
10-18 км - граница между тропосферой и стратосферой на разных широтах (тропопауза). Также это граница подъёма обычных облаков, дальше простирается разрежённый и сухой воздух.
18,9-19,35 - линия Армстронга - начало космоса для организма человека - закипание воды при температуре человеческого тела. Внутренние телесные жидкости на этой высоте ещё не кипят, поскольку тело генерирует достаточно внутреннего давления, чтобы предотвратить этот эффект, но могут начать кипеть слюна и слёзы с образованием пены, набухать глаза.
19 км - яркость тёмно-фиолетового неба в зените 5 % от яркости чистого синего неба на уровне моря (74,3-75 свечей против 1500 свечей на м²), днём могут быть видны самые яркие звёзды и планеты.
20 км - интенсивность первичной космической радиации начинает преобладать над вторичной (рождённой в атмосфере).
20 км - потолок тепловых аэростатов (монгольфьеров) (19 811 м).
20-22 км - верхняя граница биосферы: предел подъёма в атмосферу живых спор и бактерий воздушными потоками.
20-25 км - яркость неба днём в 20-40 раз меньше яркости на уровне моря, как в центре полосы полного солнечного затмения и как в сумерки, когда Солнце ниже горизонта на 9-10 градусов и видны звёзды до 2-й звёздной величины.
25 км - днём можно ориентироваться по ярким звёздам.
25-26 км - максимальная высота установившегося полёта существующих реактивных самолётов (практический потолок).
15-30 км - озоновый слой на разных широтах.
34,668 км - официальный рекорд высоты для воздушного шара (стратостата), управляемого двумя стратонавтами (Проект Страто-Лаб, 1961 г.).
35 км - начало космоса для воды или тройная точка воды: на этой высоте вода кипит при 0 °C, а выше не может находиться в жидком виде.
37,65 км - рекорд высоты существующих турбореактивных самолётов (Миг-25, динамический потолок).
38,48 км (52 000 шагов) - верхняя граница атмосферы в 11 веке: первое научное определение высоты атмосферы по продолжительности сумерек (араб. учёный Альгазен, 965-1039 гг.).
39 км - рекорд высоты стратостата, управляемого одним человеком (Ф. Баумгартнер, 2012 г.).
45 км - теоретический предел для прямоточного воздушно-реактивного самолёта.
48 км - атмосфера не ослабляет ультрафиолетовые лучи Солнца.
50 км - граница между стратосферой и мезосферой (стратопауза).
51,694 км - последний пилотируемый рекорд высоты в докосмическую эпоху (Джозеф Уокер на ракетоплане X-15, 30 марта 1961 г.)
51,82 км - рекорд высоты для газового беспилотного аэростата.
55 км - атмосфера не воздействует на космическую радиацию.
40-80 км - максимальная ионизация воздуха (превращение воздуха в плазму) от трения о корпус спускаемого аппарата при входе в атмосферу с первой космической скоростью.
70 км - верхняя граница атмосферы в 1714 г. по расчёту Эдмунда Галлея на основе данных альпинистов, законе Бойля и наблюдений за метеорами.
80 км - граница между мезосферой и термосферой (мезопауза): высота серебристых облаков.
80,45 км (50 миль) - официальная высота границы космоса в США.
100 км - официальная международная граница между атмосферой и космосом - линия Кармана, определяющая границу между аэронавтикой и космонавтикой. Аэродинамические поверхности (крылья) начиная с этой высоты не имеют смысла, так как скорость полёта для создания подъёмной силы становится выше первой космической скорости и атмосферный летательный аппарат превращается в космический спутник. Плотность среды на этой высоте 12 триллионов молекул на 1 дм³

СТРАТОСФЕРА . Земная атмосфера делится на ряд слоев, отличающихся между собой по своему физическому состоянию. Важнейшими слоями являются: нижний слой - тропосфера, характеризующийся процессом перемешивания воздушных масс и как следствие понижением температуры с высотой. Высота, до которой развивается слой тропосферы, зависит от интенсивности тех факторов, которые вызывают процессы перемешивания: солнечного нагревания, механического влияния земной поверхности и пр. Выше слоя тропосферы находится слой, в котором процессы перемешивания отсутствуют или играют ничтожную роль. Принято обычно называть атмосферу, находящуюся выше слоя тропосферы, стратосферой , что означает зону, характеризующуюся слоистым строением. Пограничная область между тропосферой и стратосферой называется тропопаузой . Стратосфера отличается от тропосферы, прежде всего отсутствием всех эффектов процессов перемешивания, которые свойственны тропосфере: понижения температуры, облачных образований и пр. Вместе с этим в стратосфере частично вследствие низких ее температур, частично вследствие отсутствия притока от земной поверхности водяные пары находятся в совершенно ничтожном количестве. В таблице приведены значения температур, давления и удельного веса воздуха на различных высотах до 40 км по данным наблюдений европейских станций.

Те же данные приведены графически на фиг. 1.

Из хода температуры видно, что в летнее время стратосфера (слой, где температура перестает понижаться) начинается на высоте 12 км, а зимой - на высоте 11 км. Однако приведенные числа характеризуют только среднее распределение над Европой. Многочисленные зондировки в различных частях земного шара дали в настоящее время полную картину температурного строения стратосферы. На фиг. 2 приведена схема этого распределения по широтам по Раманатану.

Ход температур с высотой приведен по Раманатану на фиг. 3, и там можно видеть, что на экваторе, где высота стратосферы наибольшая и где достигаются наиболее низкие температуры (до -90°С), ход температуры в слое стратосферы характеризуется резким повышением температуры с высотой. В районах, более удаленных от экватора, возрастание температуры с высотой оказывается менее заметным.

Однако данные радиозондовых подъемов в полярных районах заставляют признать, что и здесь в стратосфере происходит довольно резко выраженное повышение температуры с высотой, как это видно на фиг. 3, дающей распределение температуры по радиозондам, выпущенным автором с цеппелина в 1931 г.

На фиг. 4 приведена схема распределения температур в зимнее и летнее время, предложенная в последнее время (январь 1934 г.) Пальменом.

Особенности этой схемы, полученной Пальменом на основании данных зондировок в Абиско (Сев. Швеция 68°21") и по данным подъемов радиозондов автора с цеппелина, следующие. В летнее время температуры стратосферы резко повышаются по мере перехода на север. В то время как над экватором на высоте 17 км мы имеем температуры, близкие к -80°С, над полярными районами на той же высоте температуры приближаются к -35°С. Самый ход температуры (падение температуры на 111 км в направлении наибольшего понижения температуры) в полярных районах хорошо характеризуется данными подъемов радиозондов с цеппелина, очень близко совпавшими с данными подъемов простых зондов в Абиско (фиг. 5).

В зимнее время картина распределения температуры в стратосфере и над различными широтами отличается от летней в том отношении, что горизонтальный градиент температуры (падение температуры на 111 км в направлении наибольшего ее понижения), имеющий очень большое значение и направленный к экватору в летнее время, в зимнее оказывается значительно меньше, т. к. температура в стратосфере и над полюсами очень низки. По Пальмену в самых северных широтах (севернее 55°) в стратосфере так же, как и в тропосфере, градиент температуры по горизонтали направлен на стратосферу.

Ниже приведены данные о повторяемости высот с минимальной температурой воздуха (конец тропосферы и начало тропопаузы) по наблюдениям Института аэрологии в Слуцке (близ Ленинграда) за 1934 -1935 гг.

Из данных видно, что в то время как на высотах от 9 до 11 км мы имеем больше 50% всех случаев начала тропопаузы, на высотах ниже 1 км повторяемость начала тропопаузы сводится к нулю. Ниже приведены повторяемости в % различных значений минимальных температур для того же пункта:

Из данных видно, что в стратосфере чаще всего встречаются температуры от -45 до -55°С (более 50% всех случаев), в то время как температуры ниже -70 и выше -35°С встречаются как исключение. Сравнительное постоянство температур с высотой в стратосфере наводит естественно на мысль, что здесь мы имеем дело с т. н. лучистым равновесием, при котором каждая воздушная частичка излучает за данный промежуток времени такое же количество энергии, как и получает. Теории лучистого равновесия развивались Гемфри, Эмденом, Гольдом и Хергезеллем. В последнее время этим вопросом занимались Мюгге, Симпсон и Альбрехт. Альбрехт развил теорию лучистого равновесия, рассматривая отдельные части спектра водяного пара. Он пришел к заключению, что тепловое излучение нижних слоев атмосферы, так же как и земной поверхности, имеет очень малое значение для состояния стратосферы и что в верхних слоях атмосферы должен находиться слой с повышенной степенью излучения, под влиянием которого создается резкая граница между слоем тропосферы и стратосферы и в котором содержание водяного пара составляет величину, промежуточную между 0,015 и 0,15 мм. На фиг. 2 высота этого слоя показана в виде заштрихованной полосы. Понижение температуры этого слоя по мнению Альбрехта и ведет к общему понижению температуры в тропосфере по мере поднятия. Приведенное объяснение не может быть, однако, полностью принято. Действительно, уже сам Альбрехт отмечает несоответствие своих рассуждений с тем явлением, что рассматриваемый им слой находится в непосредственной близости к стратосфере только под широтами, большими 50°. С другой стороны, эта теория не может объяснить значительных понижений температуры над экватором. По-видимому теория Альбрехта может служить только для объяснения того увеличенного понижения температуры, сказывающегося на увеличении вертикальных градиентов температуры, которые наблюдаются в верхних слоях тропосферы и не м. б. объяснены другими соображениями. Во всяком случае, пониженная температура стратосферы определяется незначительным поглощением тепловой энергии солнечных лучей воздухом стратосферы.

Внешняя картина распределения температуры в слое стратосферы бывает различной. Шмаусс различает 4 типа такого распределения. Нормальный тип характеризуется сменой падения температуры в тропосфере, б. или м. изотермическим слоем в стратосфере, температура которого до значительных высот остается постоянной. Второй тип отличается от первого тем, что тропосфера отделяется от изотермического слоя стратосферы б. или м. резко выраженной инверсией. Возможно, что возникновение слоя инверсии связано с усиленной конвекцией в тропосфере или, как можно думать, следуя рассуждениям Альбрехта, в результате интенсивного излучения эффективного слоя с содержанием водяных паров 0,015- 0,15 мм. В третьем типе ход температуры в стратосфере имеет вид слабо выраженной инверсии, т. е. постепенного повышения температуры с высотой. Наконец четвертый, сравнительно редко встречающийся тип распределения температуры в стратосфере характеризуется отсутствием резко выраженного слоя перехода от тропосферы к стратосфере, как это имеет место в других типах. Вместо этого переход проявляется в виде замедленного понижения температуры с высотой, переходящего постепенно в изотермию. Пальмен, подробно рассматривавший различные случаи распределения температуры в стратосфере, пришел к мысли о выделении следующих трех основных типов (фиг. 6).

В первом случае (кривая I) понижение температуры тропосферы переходит в изотермию, остающуюся на всех высотах стратосферы. Этот тип он считает «нормальным» типом. Во втором типе (кривая II Пальмена) температура при вступлении в стратосферу резко повышается, достигает максимального значения на расстоянии нескольких км и выше начинает снова понижаться. Этот тип Пальмен считает характерным для циклонального режима. Наконец третий тип (кривая III) - антициклональный - характеризуется тем, что температура в стратосфере повышается на всех высотах, хотя и с различной скоростью. При этом, по мнению Пальмена, циклональный тип имеет в стратосфере температуру выше нормальных, антициклональный - ниже нормальных. Т. о. температура в обоих этих типах с высотой как бы стремится к приближению к нормальным значениям.

При изучении атмосферных процессов тропосферы естественно возникает мысль о той роли, которую может играть в этих процессах стратосфера. Является ли этот слой совершенно мертвым слоем, не имеющим значения для жизни тропосферы, или, наоборот, происходящие в нем процессы диктуют направление и характер развития процессов в тропосфере. В настоящее время можно указать на две основные школы аэрологии, придерживающиеся совершенно противоположных взглядов. Первая школа (проф. фон Фиккер) приписывает стратосферным процессам если не доминирующее, то во всяком случае руководящее значение в развитии атмосферных процессов тропосферы. Роль стратосферы по воззрениям этой школы хорошо выражается словами Н. Шоу, что динамика атмосферы определяется верхними слоями, в то время как чисто физические процессы, связанные с конденсацией, образованием облаков и пр., развертываются в тропосфере. Происхождение первичных волн в стратосфере может быть связано как с термическими, так и чисто динамическими причинами. Термические причины связаны с приходом теплых или холодных воздушных масс, перемещающихся по горизонтали. Т. о. по мнению этой школы в стратосфере мы можем иметь теплые пли холодные волны по образцу тех, которые развиваются в тропосфере в области полярного фронта. Совершенно иных взглядов придерживается норвежская школа. Взгляды последней развивались Бержероном, Бьеркнесом, Пальменом и др. Эти авторы дали детальный разбор явлений в стратосфере на основании фактического материала по данным зондовых и радиозондовых подъемов. Норвежская школа также принимает, что в стратосфере развиваются температурные волны, но про вхождение их она целиком связывает с процессами в тропосфере. Пальмен и Бьеркнес различают два основных фактора, могущих вызвать соответствующие колебания температуры в стратосфере. Первый фактор определяется термически-адвективными процессами, при которых в тропосфере развивается приток теплых или холодных масс. Особенно детально исследовал Пальмен явления, происходящие в полярном фронте. На основе фактического материала температурного зондирования Пальмен дал картину распределения температуры в полярном и тропическом воздухе. Полярные массы характеризуются пониженными температурами в тропосфере и повышенными температурами в стратосфере. Тропопауза в полярных массах оказывается значительно ниже, чем в тропических массах. В отдельных случаях Пальмен констатировал опускание тропопаузы до 5 км. Наоборот, в тропических массах тропопауза находится на повышенном уровне, температуры в нижних слоях повышены, в стратосфере - понижены. Из сравнения данных для тропических и полярных масс выясняется, что наибольшая разность температуp наблюдается на высоте 4-7 км и на высоте 11-13 км, причем эти разности температур имеют противоположный знак. Отсюда Пальмен приходит к выводу, что достаточно сильные вхождения теплых и холодных масс, происходящие в тропосфере, получают свое отражение и в стратосфере. При этом вторичная стратосферная волна смещена фазами, и в начальный момент развития волны в тропосфере связанная с ней волна получает противоположный знак. При этом Пальмен приходит к важному для норвежской теории заключению, что поверхность раздела между полярными и тропическими массами, как это и принималось в первоначальной теории Бьеркнеса, доходит до тропосферы, а не ограничивается слоем в 4-5 км. Наиболее ясно выражена поверхность раздела на средних высотах. Однако, как отмечают и сам Пальмен и представители немецкой школы, в настоящее время трудно утверждать, чья точка зрения может считаться окончательно победившей. Совершенно несомненно, что только детальные исследования атмосферы, имеющие целевое назначение, могут дать материал для окончательного суждения в этом вопросе.

Здесь следует остановиться на некоторых обстоятельствах, могущих дать указания на особенности развития атмосферных процессов. Прежде всего, необходимо поставить вопрос о том, в каком из этих слоев мы имеем непосредственный приток энергии, могущий вызвать те или иные динамические процессы. Под этим притоком энергии необходимо подразумевать неоднородный поток, создающий неравномерное нагревание или охлаждение. Очевидно, что наличие неравномерно нагревающейся земной поверхности, неравномерное распределение доходящей до земли солнечной энергии и пр. делают тропосферу несомненным очагом неравномерно поступающей энергии. В стратосфере наблюдается, с одной стороны, совершенно равномерная солнечная инсоляция, т. к. наклон солнечных лучей практического значения для интенсивности приходящей к данному участку солнечной энергии не имеет; с другой стороны, здесь совершенно отсутствуют облака, пылевые частички и пр. Первоисточник т. о. всякого рода динамических возбуждений - неравномерно поступающая энергия - здесь отсутствует. Кроме того несомненно, что в стратосфере мы встречаемся с наличием резких колебаний температур, констатируемых как по зондам за границей, так и зондажом при помощи ежедневных исследований радиозондами у нас. Приходится поэтому признать, что происхождение этих колебаний м. б. связано, как думает Пальмен, только с процессами, развивающимися в глубинах тропосферы. Стратосфера представляет собой слой, отзывающийся на соответствующих процессах в тропосфере. Противоположность фаз тропосферных волн, отмеченная Пальменом, позволяет думать, что роль стратосферы в этих случаях заключается в противодействии развитию резких колебаний в тропосфере, связанному с поглощением некоторого количества энергии тропосферных процессов. Но с другой стороны, стратосферные волны, будучи созданы, не могут не отразиться на развитии тропосферных процессов. Можно также предполагать, что, раз возникнув, стратосферные возмущения могут оторваться от соответствующего им первичного процесса в тропосфере и получить самостоятельную активную роль. Совершенно очевидно, что интерференция стратосферных и тропосферных возмущений играет громадную роль в развитии явлений погоды. Т. о. роль стратосферы в развитии и в некоторых случаях даже возникновения тропосферных возмущений того же порядка несомненна. При этом можно предполагать, что эта роль имеет стабилизирующий эффект, поглощая часть энергии, развиваемой тропосферными возмущениями. Вследствие изотермического распределения температурный слой стратосферы должен оказывать чрезвычайно сильное сопротивление колебаниям воздушных масс по вертикали, возникающим при прохождении теплых или холодных волн. Т. о. слой стратосферы представляет собой как бы эластичный слой, демпфирующий колебания нижнего слоя. Автор неоднократно указывал на проявление в атмосферных процессах своеобразного принципа стабилизации, заключающегося в том, что развитие атмосферных процессов под действием какого-либо нарушающего нормальное состояние атмосферы фактора происходит в таком направлении, при котором действие указанного фактора или ослабляется или совершенно исчезает. Сказанное выше относительно роли стратосферы позволяет думать, что и здесь мы имеем своеобразное проявление закона стабилизации атмосферных процессов. Естественно, что для правильного понимания происходящих в тропосфере явлений совершенно необходимо иметь подробные данные, характеризующие состояние стратосферы. В особенности важны для составления анализа распределение температуры и влажности до слоя тропопаузы и в самом слое тропопаузы, т. к. высота тропопаузы и ее строение оказываются чрезвычайно характерными для происходящих в тропосфере процессов.

Стратосфера представляет интерес не только с точки зрения ее роли в процессах, создающих погоду в тропосфере. В связи с тем, что в тропосфере наличие облаков, осадков и пр. нередко создает непреодолимые препятствия для совершения полета, в особенности на дальние расстояния, существует стремление освоить стратосферу как зону дальних перелетов. В этом отношении стратосфера имеет ряд преимуществ перед тропосферой. Помимо отсутствия облаков и совершенного исключения возможности оледенения в стратосфере следует ожидать, что воздушные течения отличаются исключительной правильностью в отличие от сильно завихренных течений тропосферы. Что касается скорости движения воздушных масс, то наблюдения показывают, что в большинстве случаев здесь отмечается некоторое замедление скорости. Однако не следует думать, что стратосфере свойственны штили. Наиболее обычной скоростью для стратосферы является скорость 10-20 м/сек. В отдельных случаях, в особенности в зимнее время, здесь отмечаются скорости до 30-35 м/сек (более 100 км/ч). Наконец стратосфера привлекает внимание современной физики, так как именно здесь развертывается наиболее эффективное действие таинственных космических лучей, природа которых продолжает оставаться невыясненной до сих пор.

Резюмируя сказанное выше, мы можем отметить, что тщательное изучение явлений в стратосфере, в частности в ее нижних слоях 10-20 км, представляет, несомненно, одну из важнейших задач современной аэрологии как для целей завоевания этой зоны для воздушного транспорта, так и для выяснения ряда вопросов теоретической аэрологии и теоретической физики. Приведенные выше данные относятся к тем слоям стратосферы, которые были исследованы методами непосредственного зондирования при помощи самопишущих или радиопередающих приборов. Другими методами (звукометрическим, посредством определения загорания и потухания метеоров, определения переходных моментов затухания и пр.) в настоящее время доказано, что с высоты примерно 40 км находится слой, в котором температура с высотой резко повышается, доходя на высоте 50-60 км до значений +60°С и более. Вопрос о составе воздуха в стратосфере для нижних слоев последней в настоящее время можно считать решенным в результате измерений, произведенных при поднятии стратостата «СССР-1» в 1933 г. Именно исследование проб воздуха, забранных при этом полете, показало, что на высоте 18500 м содержание кислорода составляло 20,95%, т. е. величину, чрезвычайно (в пределах точности измерений) близкую к содержанию кислорода у земной поверхности. Об изменении состава воздуха в слоях выше 19000 м пока не имеется достоверных сведений. По-видимому, надо предполагать, что вследствие большого удельного веса кислорода, а также вследствие несомненного отсутствия в верхних слоях конвективного перемешивания содержание кислорода с высотой должно постепенно убывать. Дальнейшие измерения могут внести ясность в этот вопрос. Весьма важным теоретически и практически оказывается содержание озона в воздухе. Последние исследования Регенера (Штуттгарт) показали, что весь атмосферный озон находится в слое до 28 км, причем главная масса озона сосредоточивается в слое 12-28 км. Известно, что озон оказывает вредное влияние на резину. Соответственно этому Регенер рекомендует давать шарам-зондам возможно большую скорость поднятия с тем, чтобы действие озона на оболочку было по возможности кратковременным.

Методы исследования стратосферы . Практически для исследования стратосферы применимы различные способы. Исследование стратосферы шарами-зондами заключается в том, что к небольшому шару подвешивают особый прибор, автоматически записывающий при поднятии в атмосфере состояние температуры, давления и влажности. После достижения максимальной высоты и разрыва оболочки шара прибор опускается вниз или на специальном парашюте или на дополнительном шаре, раздутом в меньшей степени, чем главный шар. Очевидно, что данный способ совершенно неприменим для мало обитаемых пространств. Поэтому автор предложил в 1923 г. и к 1930 г. разработал и применил новый метод - радиозонда , заключающийся в том, что прибор особой конструкции снабжается специальным передатчиком и во время полета передает вниз данные о состоянии метеорологических элементов. Наибольшая достигнутая таким методом высота составила 29600 м (Институт аэрологии). Для шаров-зондов наибольшая высота поднятия составляет 36000 м (Германия). Для получения данных о распределении температуры в высоких слоях атмосферы и в том числе в стратосфере подъемы шаров-зондов и радиозондов совершаются в настоящее время по особой программе в т. наз. «международные дни» по всему миру. В СССР исследования стратосферы производятся ежедневно в ряде пунктов: Слуцке, Москве, Киеве, Севастополе, Тифлисе и пр. В Институте аэрологии в Слуцке (близ Ленинграда) методом радиозонда исследования производятся ежедневно два раза (днем и ночью). Непосредственные исследования стратосферы оказались возможными благодаря применению стратостата, представляющего воздушный шар большого объема с герметичной гондолой. Идея таких аэростатов принадлежит Д. И. Менделееву, предложившему ее еще в 1875 г. Первое поднятие на стратостате было совершено проф. Пиккаром (Бельгия). В СССР были совершены три полета: «СССР-1» - в 1933 г., «Осоавиахим-1» - 30 января 1934 г. и «СССР-1 bis» 24/VI 1935 г. В том же году американский стратостат «Эксплорер-2» поднялся на высоту 22040 м. Основным затруднением для достижения больших высот в стратосфере является низкое давление этих слоев. Убывание удельного веса воздуха, соответствующее этому давлению, чрезвычайно уменьшает подъемную силу шара. Необходимо поэтому иметь шары громадных размеров, чтобы они могли сохранять достаточную подъемную силу на больших высотах. Например, для поднятия на высоту 20-22 км необходимо иметь оболочку не менее 20-25 тыс. м 3 . Для поднятия на высоту 30 км объем оболочки должен превышать (для самой легкой материи оболочки) 100-150 тыс. м 3 и т. д. Значительно проще достигаются большие высоты применением эластичных резиновых оболочек, могущих увеличивать свой объем до чрезвычайно больших размеров. Например, шар, имевший у земли объем в 4,2 м 3 , увеличил на высоте 30 км свой объем до 366 м 3 , растянув свою оболочку от толщины в 0,3 мм до 0,0088 мм. Можно думать, что достижение больших высот (больше 30 км) возможно вообще только для резиновых оболочек. Исследование слоев выше 35-40 км производится звукометрическим методом, основанным на исследовании распределения слышимости взрывов у земной поверхности на различных расстояниях по всем направлениям от места взрыва. Принцип этих исследований основан на том, что звуковая волна, распространяясь вверх, отражается от слоя на высоте 35-40 км и возвращается на землю, образуя зоны аномальной слышимости звука на больших расстояниях. Для исследования еще больших высот - 80-100 км - применяются исследования распространения электромагнитных волн, отражающихся от слоя на высоте 100 км, носящего название слоя Хивисайда и обладающего большими значениями электрической проводимости. Наконец для исследования стратосферы в слоях выше 40 км применяются оптические исследования хода сумерек, высоты загорания и потухания метеоров и спектра северного сияния. Последние исследования дают нам данные о структуре и составе самых высоких слоев атмосферы.

Роль атмосферы в жизни Земли

Атмосфера является источником кислорода, которым дышат люди. Однако при подъеме на высоту общее атмосферное давление падает, что приводит к снижению парциального кислородного давления.

Лёгкие человека содержат приблизительно три литра альвеолярного воздуха. Если атмосферное давление в норме, то парциальное кислородное давление в альвеолярном воздухе будет составлять 11 мм рт. ст., давление углекислых газов - 40 мм рт. ст., а водяных паров - 47 мм рт. ст. При увеличении высоты кислородное давление понижается, а давление паров воды и углекислоты в лёгких в сумме будет оставаться постоянным - приблизительно 87 мм рт. ст. Когда давление воздуха сравняется с этой величиной, кислород прекратит поступать в лёгкие.

В связи со снижением атмосферного давления на высоте 20 км, здесь будет кипеть вода и межтканевая жидкость организма в человеческом теле. Если не использовать герметическую кабину, на такой высоте человек погибнет практически мгновенно. Поэтому с точки зрения физиологических особенностей человеческого организма, «космос» берёт начало с высоты 20 км над уровнем моря.

Роль атмосферы в жизни Земли очень велика. Так, например, благодаря плотным воздушным слоям - тропосфере и стратосфере, люди защищены от радиационного воздействия. В космосе, в разреженном воздухе, на высоте свыше 36 км, действует ионизирующая радиация. На высоте свыше 40 км - ультрафиолетовая.

При подъёме над поверхностью Земли на высоту свыше 90-100 км будет наблюдаться постепенное ослабление, а затем и полное исчезновение привычных для человека явлений, наблюдаемых в нижнем атмосферном слое:

Не распространяется звук.

Отсутствует аэродинамическая сила и сопротивление.

Тепло не передаётся конвекцией и т. д.

Атмосферный слой защищает Землю и все живые организмы от космической радиации, от метеоритов, отвечает за регулирование сезонных температурных колебаний, уравновешивание и выравнивание суточных. При отсутствии атмосферы на Земле суточная температура колебалась бы в пределах +/-200С˚. Атмосферный слой - это животворный «буфер» между земной поверхностью и космосом, носитель влаги и тепла, в атмосфере происходят процессы фотосинтеза и обмена энергии - важнейших биосферных процессов.

Слои атмосферы по порядку от поверхности Земли

Атмосфера - это слоистая структура, представляющая собой следующие слои атмосферы по порядку от поверхности Земли:

Тропосфера.

Стратосфера.

Мезосфера.

Термосфера.

Экзосфера

Каждый слой не имеет между собой резких границ, а на их высоту влияет широта и времена года. Такая слоистая структура образовалась в результате температурных изменений на различных высотах. Именно благодаря атмосфере мы видим мерцающие звезды.

Строение атмосферы Земли по слоям:

Из чего состоит атмосфера Земли?

Каждый атмосферный слой отличается температурой, плотностью и составом. Общая толщина атмосферы составляет 1,5-2,0 тыс. км. Из чего состоит атмосфера Земли? В настоящее время - это смесь газов с различными примесями.

Тропосфера

Строение атмосферы Земли начинается с тропосферы, которая представляет собой нижнюю часть атмосферы высотой примерно 10-15 км. Здесь сосредоточена основная часть атмосферного воздуха. Характерная черта тропосферы - падение температуры на 0,6 ˚C по мере поднятия вверх на каждые 100 метров. Тропосфера сосредоточила в себе практически все атмосферные водяные пары, и здесь же происходит формирование облаков.

Высота тропосферы ежедневно изменяется. Кроме того, её средняя величина меняется в зависимости от широты и сезона года. Средняя высота тропосферы над полюсами - 9 км, над экватором - около 17 км. Показатели средней годовой температуры воздуха над экватором приближены к +26 ˚C, а над Северным полюсом -23 ˚C. Верхняя линия границы тропосферы над экватором составляет среднегодовую температуру около -70 ˚C, а над северным полюсом в летнее время -45 ˚Cи в зимнее -65 ˚C. Таким образом, чем больше высота, тем ниже температура. Лучи солнца беспрепятственно проходят сквозь тропосферу, нагревая поверхность Земли. Тепло, излучаемое солнцем, удерживаются благодаря углекислому газу, метану и водяным парам.

Стратосфера

Над слоем тропосферы расположена стратосфера, составляющая 50-55 км в высоту. Особенность этого слоя заключается в росте температуры с высотой. Между тропосферой и стратосферой пролегает переходная прослойка, называющаяся тропопаузой.

Приблизительно с высоты 25 километров температура стратосферного слоя начинает возрастать и, при достижении максимальной высоты 50 км приобретает значения от +10 до +30 ˚C.

Паров воды в стратосфере очень мало. Иногда на высоте около 25 км можно обнаружить довольно тонкие облака, которые называют «перламутровыми». В дневное время они не заметны, а в ночное - светятся из-за освещения солнцем, которое находится под горизонтом. Состав перламутровых облаков представляет собой переохлаждённые водяные капельки. Стратосфера состоит в основном из озона.

Мезосфера

Высота слоя мезосферы - приблизительно 80 км. Здесь, с поднятием кверху, температура понижается и на самой верхней границе достигает значений в несколько десятков С˚ ниже нуля. В мезосфере также можно наблюдать облака, которые, предположительно, образуются из кристаллов льда. Эти облака называются «серебристыми». Мезосфера характеризуется самой холодной температурой в атмосфере: от -2 до -138 ˚C.

Термосфера

Своё название этот атмосферный слой приобрёл благодаря высоким температурам. Термосфера состоит из:

Ионосферы.

Экзосферы.

Ионосфера характеризуется разреженным воздухом, каждый сантиметр которого на высоте 300 км состоит из 1 млрд атомов и молекул, а на высоте 600 км - более, чем из 100 млн.

Также ионосфере характерна высокая ионизация воздуха. Эти ионы состоят из заряженных кислородных атомов, заряженных молекул атомов азота и свободных электронов.

Экзосфера

С высоты 800-1000 км начинается экзосферный слой. Частицы газа, особенно лёгкие, движутся здесь с огромной скоростью, преодолевая силу тяжести. Такие частицы, вследствие своего быстрого движения, вылетают из атмосферы в космическое пространство и рассеиваются. Поэтому экзосфера имеет название сферы рассеивания. Вылетают в космос преимущественно водородные атомы, из которых состоят наиболее высокие слои экзосферы. Благодаря частицам в верхних слоях атмосферы и частицам солнечного ветра мы можем наблюдать северное сияние.

Спутники и геофизические ракеты позволили установить наличие в верхних слоях атмосферы радиационного пояса планеты, состоящего из электрических заряженных частиц - электронов и протонов.

Земля - не единственная из планет солнечной системы, обладающая газовой оболочкой - атмосферой. Её имеют все планеты и многие спутники - даже у нашей ближайшей космической «соседки» Луны (вопреки распространённому заблуждению) атмосфера есть (правда, в десять триллионов раз менее плотная, чем земная). Но только земной «воздушный океан » смог дать начало жизни - и позволить ей развиться до разумной.

Толщина нашего «воздушного океана» колеблется от 2 000 до 3 000 км, и он не однороден. По мере удаления от поверхности планеты меняется плотность (чем выше, тем разреженнее), его состав и некоторые другие свойства. Соответственно этим свойствам атмосфера подразделяется на своего рода «этажи», отличающиеся друг от друга.

Мы живём - как нетрудно догадаться - на «нижнем этаже», называемом тропосферой . Толщина её - от 8-10 км в районах полюсов до 16-18 км на экваторе… в сравнении со всей атмосферой это кажется «каплей в море» - но в этой «капле» сосредоточено 80% всего воздуха и большая часть водяных паров. Благодаря этому мы и можем жить. Температура воздуха в тропосфере понижается по мере удаления от земной поверхности, достигая в конечном итоге -53° C… и вот тут это правило работать практически перестаёт. Происходит это на верхней границе тропосферы - т н. тропопаузе. Дальше - следующий «этаж», со своими свойствами и «законами» - стратосфера. Так что такое стратосфера ?

Этот слой атмосферы начинается на высоте 11 км и простирается до 50. Название стратосфера происходит от греческих слов «сфера» (шар) и «стратум» - покрывало. Название действительно вполне справедливо: ведь именно в стратосфере находится то самое «покрывало», которое защищает нашу планету от опасного ультрафиолетового - озоновый слой. Интересно, что то самое ультрафиолетовое излучение, которое поглощает озон, его и порождает: это под его воздействием молекулы кислорода распадаются на атомы, которые затем присоединяются к другим молекулам кислорода - O 2 - образуя трёхатомные молекулы (O 3).

Бывают в нашем «покрывале» и дыры. Особенно перепугала человечества озоновая дыра над Антарктидой диаметром более 1000 км, открытая в 1985 г. Сразу заговорили о человеческой деятельности, угрожающей озоновому слою … конечно, и говорить об этом, и - главное - действовать было нужно (поскольку промышленные выбросы действительно угрожают состоянию атмосферы). Но вот к возникновению антарктической озоновой дыры человечество как раз и непричастно.

На ледяном континенте тоже есть свои времена года и сезонные колебания температуры. При её падении в стратосфере образуются облака , содержащие кристаллы льда. Кристаллы эти вызывают серию химических реакций , в которые мы сейчас углубляться не будем - главное, что в результате их образуются молекулы хлора, которые вступают в реакцию с молекулами озона, превращая его в обычный кислород:

Cl + O 3 —> ClO + O 2 и ClO + O —> Cl + O 2

С наступлением же весны в эту область устремляется воздух, приносящий новый озон - и «дыра» исчезает.

Благодаря тому, что озон поглощает ультрафиолетовое излучение, температура воздуха в стратосфере с не падает, а наоборот - повышается: на высоте 40 км она уже составляет 0,8 °С, а затем - до 55 км - остаётся постоянной (около нуля).

Кроме образования озона, в стратосфере под воздействием ультафиолета происходят и другие удивительные явления - например, распадаются молекулы и атомы, образуя ионы, и этим процессам мы обязаны фантастическим зрелищем северных сияний … возможно, поэтому герой фильма «Цирк» назвал свой феерический номер, призванный стать «нашим ответом» западным артистам, «Полётом в стратосферу»?

О полётах в стратосферу задумывались давно… по сути дела, туда - на высоту 43 тысячи футов (13 106,4 м) отправил своего героя А.Конан-Дойль в рассказе «Ужас в небесах», населив стратосферу диковинными и опасными существами, обитающими в «небесных джунглях»… Ничего подобного в стратосфере, конечно, нет - но не будем судить строго сэра , он писал свой рассказ в 1913 г., до настоящих полётов в стратосферу. Первый же настоящий полёт состоялся в Аусбурге (Германия) 27 мая 1931 г. - и сделали это швейцарсий изобретатель О.Пиккар и его ассистент П.Кипфер с помощью стратостата - аэростата, специально предназначенного для полётов в стратосферу. Они поднялись на высоту 15 781 метра. Бортовой журнал сохранил восторженные слова О.Пиккара о невиданной неба: «Оно тёмное, тёмно-синее или фиолетовое, почти ».

В наши дни сверхзвуковые самолёты летают в стратосфере на высоте до 20 км, а метеозонды - до 40 км.

Но в последние годы немало говорится о беспилотных , а также самолётах, на солнечной энергии, которые будут летать на высоте 30 км. Такой аппарат обеспечит связью и «покроет» наблюдением огромную территорию - не хуже, чем любой спутник , а вот обходиться будет дешевле. А главное - будет почти неуязвим для ПВО …

Ну вот, опять, стоит завести речь о технических новшествах - кончается оружием и ! Неужели человечество неспособно оставить таких мыслей - даже в стратосфере?

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то