Закон кулона объяснение. Закон Кулона. Точечный заряд



Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке. Точечный заряд – это электрический заряд , когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона . Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила взаимодействия называется кулоновская сила , и формула закона Кулона будет следующая:

F = k · (|q 1 | · |q 2 |) / r 2

Где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

K = 1 / (4πε 0 ε)

Где ε 0 = 8,85 * 10 -12 Кл/Н*м 2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 10 9 Н*м/Кл 2 .

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = · [(|q 1 | · |q 2 |) / r 2 ]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = · [(|q 1 | · |q 2 |) / r 2 ] = k · (1 /π) · [(|q 1 | · |q 2 |) / r 2 ]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F 1,2 = -F 2,1

Кулоновская сила является центральной силой. Как показывает опыт , одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F 2,1 , действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с , на одном конце которой закреплён металлический шарик а , а на другом противовес d . Верхний конец нити закреплён на вращающейся головке прибора е , угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b , неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Заряды и электричество - это термины, обязательные для тех случаев, когда наблюдается взаимодействие заряженных тел. Силы отталкивания и притяжения словно исходят от заряженных тел и распространяются одновременно во всех направлениях, постепенно затухая на расстоянии. Эту силу в свое время открыл известный французский естествоиспытатель Шарль Кулон, и правило, которому подчиняются заряженные тела, с тех пор называется Закон Кулона.

Шарль Кулон

Французский ученый родился во Франции, где получил блестящее образование. Он активно применял полученные знания в инженерных науках и внес значительный вклад теорию механизмов. Кулон является автором работ, в которых изучалась работа ветряных мельниц, статистика различных сооружений, кручение нитей под влиянием внешних сил. Одна из этих работ помогла открыть закон Кулона-Амонтона, объясняющий процессы трения.

Но основной вклад Шарль Кулон внес в изучение статического электричества. Опыты, которые проводил этот французский ученый, подвели его к пониманию одного из наиболее фундаментальных законов физики. Именно ему мы обязаны знанием природы взаимодействия заряженных тел.

Предыстория

Силы притяжения и отталкивания, с которыми электрические заряды действуют друг на друга, направлены вдоль прямой, соединяющей заряженные тела. С увеличением расстояния эта сила ослабевает. Спустя столетие после того, как Исаак Ньютон открыл свой всемирный закон тяготения, французский ученый Ш. Кулон исследовал экспериментальным путем принцип взаимодействия между заряженными телами и доказал, что природа такой силы аналогична силам тяготения. Более того, как оказалось, взаимодействующие тела в электирическом поле ведут себя так же, как и любые тела, обладающие массой, в гравитационном поле.

Прибор Кулона

Схема прибора, при помощи которого Шарль Кулон делал свои измерения, приведена на рисунке:

Как можно видеть, по существу эта конструкция не отличается от того прибора, которым в свое время Кавендиш измерял величину гравитационной постоянной. Изолирующий стержень, подвешенный на тонкой нити, заканчивается металлическим шариком, которому сообщен определенный электрический заряд. К шарику приближают другой металлический шарик, а затем, по мере сближения, измеряют силу взаимодействия по степени закручивания нити.

Эксперимент Кулона

Кулон предположил, что к силе, с которой закручивается нить, можно применить уже известный тогда Закон Гука. Ученый сравнил изменение силы при различной дистанции одного шарика от другого и установил, что сила взаимодействия изменяет свое значение обратно пропорционально квадрату дистанции между шариками. Кулон сумел изменять значения заряженного шарика от q до q/2, q/4, q/8 и так далее. При каждом изменении заряда сила взаимодействия пропорционально меняла свое значение. Так, постепенно, было сформулировано правило, которое впоследствии было названо «Закон Кулона».

Определение

Экспериментальным путем французский ученый доказал, что силы, с которыми взаимодействуют два заряженных тела, пропорциональны произведению их зарядов и обратно пропорциональны квадрату расстояния между зарядами. Это утверждение и представляет собой закон Кулона. В математическом виде он может быть выражен так:

В этом выражении:

  • q- количество заряда;
  • d - расстояние между заряженными телами;
  • k- электрическая постоянная.

Значение электрической постоянной во многом зависит от выбора единицы измерения. В современной системе величина электрического заряда измеряется в кулонах, а электрическая постоянная, соответственно, в ньютон×м 2 / кулон 2 .

Последние измерения показали, что данный коэффициент должен учитывать диэлектрическую проницаемость среды, в которой проводится опыт. Сейчас величину показывают в виде соотношения k=k 1 /e, где к 1 является уже знакомой нам электрической константой, а не является показателем диэлектрической проницаемости. В условиях вакуума эта величина равна единице.

Выводы из закона Кулона

Ученый экспериментировал с различной величиной зарядов, проверяя взаимодействие между телами с различной величиной заряда. Разумеется, измерить электрический заряд в каких-либо единицах он не мог - не хватало ни знаний, ни соответствующих приборов. Шарль Кулон смог разделять снаряд, прикасаясь к заряженному шарику незаряженным. Так он получал дробные значения исходного заряда. Ряд опытов показал, что электрический заряд сохраняется, происходит обмен без увеличения или уменьшения количества заряда. Этот фундаментальный принцип лег в основу закона сохранения электрического заряда. В настоящее время доказано, что этот закон соблюдается и в микромире элементарных частиц и в макромире звезд и галактик.

Условия, необходимые для выполнения закона Кулона

Для того чтобы закон выполнятся с большей точностью, необходимо выполнение следующих условий:

  • Заряды должны быть точечными. Другими словами, дистанция между наблюдаемыми заряженными телами должна быть намного больше их размеров. Если заряженные тела имеют сферическую форму, то можно считать, что весь заряд находится в точке, которая является центром сферы.
  • Измеряемые тела должна быть неподвижными. Иначе на движущийся заряд будут влиять многочисленные сторонние факторы, например, сила Лоренца, которая придает заряженному телу дополнительное ускорение. А также магнитное поле движущегося заряженного тела.
  • Наблюдаемые тела должны находиться в вакууме, чтобы избежать воздействия потоков воздушных масс на результаты наблюдений.

Закон Кулона и квантовая электродинамика

С точки зрения квантовой электродинамики взаимодействие заряженных тел происходит посредством обмена виртуальными фотонами. Существование таких ненаблюдаемых частиц и нулевой массы, но не нулевыго заряда косвенно подтверждается принципом неопределенности. Согласно этому принципу, виртуальный фотон может существовать между мгновениями испускания такой частицы и ее поглощения. Чем меньше расстояние между телами, тем меньше времени затрачивает фотон на прохождение пути, следовательно, тем больше энергия испускаемых фотонов. При небольшой дистанции между наблюдаемыми зарядами принцип неопределенности допускает обмен и коротковолновыми и длинноволновыми частицами, а при больших расстояниях коротковолновые фотоны в обмене не участвуют.

Есть ли пределы применения закона Кулона

Закон Кулона полностью объясняет поведение двух точечных зарядов в вакууме. Но когда речь идет о реальных телах, следует принимать во внимание объемные размеры заряженных тел и характеристики среды, в которой ведется наблюдение. Например, некоторые исследователи наблюдали, что тело, несущее в себе небольшой заряд и принудительно внесенное в электрическое поле другого объекта с большим зарядом, начинает притягиваться к этому заряду. В этом случае утверждение, что одноименно заряженные тела отталкиваются, дает сбой, и следует искать другое объяснение наблюдаемому явлению. Скорее всего, здесь не идет речь о нарушении закона Кулона или принципа сохранения электрического заряда - возможно, что мы наблюдаем неизученные до конца явления, объяснить которые наука сможет немного позже.

Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

    точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

    их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;

    взаимодействие в вакууме .

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер , а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c 2 ·10 −7 Гн /м = 8,9875517873681764·10 9 Н ·м 2 /Кл 2 (или Ф −1 ·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10 −12 Ф/м - электрическая постоянная .

Тема 1.1 ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ.

Раздел 1 ОСНОВЫ ЭЛЕКТРОДИНАМИКИ

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

2. Силы взаимодействия между зарядами.

Закон Кулона.

3. Диэлектрическая проницаемость среды.

4. Международная система единиц в электричестве.

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

Если две поверхности привести в плотное соприкосновение, то возможен переход электронов с одной поверхности на другую, при этом на этих поверхностях появляются электрические заряды.

Это явление называется ЭЛЕКТРИЗАЦИЕЙ. При трении площадь плотного соприкосновения поверхностей увеличивается, увеличивается и величина заряда на поверхности – такое явление называют ЭЛЕКТРИЗАЦИЕЙ ТРЕНИЕМ.

В процессе электризации происходит перераспределение зарядов, в результате которого обе поверхности заряжаются равными по величине, противоположными по знаку зарядами.

Т.к. все электроны имеют одинаковые заряды (отриц.) е = 1,6 10Кл, то для того, чтобы определить величину заряда на поверхности (q), необходимо знать, сколько электронов в избытке или недостатке на поверхности (N) и заряд одного электрона.

В процессе электризации новые заряды не появляются и не исчезают, а только происходит их перераспределение между телами или частями тела, поэтому суммарный заряд замкнутой системы тел остается постоянным, в этом и заключается смысл ЗАКОНА СОХРАНЕНИЯ ЗАРЯДА.

2. Силы взаимодействия между зарядами.

Закон Кулона.

Электрические заряды взаимодействуют между собой, находясь на расстоянии, при этом одноименные заряды отталкиваются, а разноименные – притягиваются.

Впервые выяснил опытным путем отчего зависит сила взаимодействия между зарядами французский ученый Кулон и вывел закон, названный законом КУЛОНА. Закон фундаментальный т.е. основан на опытах. При выводе этого закона Кулон использовал крутильные весы.

3) k – коэффициент, выражающий зависимость от окружающей среды.

Формула закона Кулона.

Сила взаимодействия между двумя неподвижными точечными зарядами прямо пропорциональны произведению величин этих зарядов и обратно пропорциональна квадрату расстояний между ними, и зависит от среды, в которой находятся эти заряды, и направлена вдоль прямой, соединяющей центры этих зарядов.

3. Диэлектрическая проницаемость среды.

Е - диэлектрическая проницаемость среды, зависит от окружающей заряды среды.

Е = 8,85*10 - физическая постоянная, диэлектрическая проницаемость вакуума.

Е – относительная диэлектрическая проницаемость среды, показывает во сколько раз сила взаимодействия между точечными зарядами в вакууме больше чем в данной среде. В вакууме самое сильное взаимодействие между зарядами.


4. Международная система единиц в электричестве.

Основной единицей для электричества в системе «СИ» является сила тока в 1А, все остальные единицы измерения являются производными от 1Ампера.

1Кл – количество электрического заряда, переносимого заряженными частицами через поперечное сечение проводника при силе тока в 1А за 1с.

q=N;

Тема 1.2 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

1. Электрическое поле – как особый вид материи.

6. Связь разности потенциалов с напряженностью электрического поля.

1. Электрическое поле – как особый вид материи.

В природе как вид материи существует электромагнитное поле. В разных случаях электромагнитное поле проявляет себя по - разному, так например около неподвижных зарядов проявляет себя только электрическое поле, которое называют электростатическим. Около подвижных зарядов можно обнаружить как электрическое, так и магнитное поля, которые в совокупности представляют ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ.

Рассмотрим свойства электростатических полей:

1) Электростатическое поле создается неподвижными зарядами, обнаружить такие поля можно

с помощью пробных зарядов (небольшой по величине положительный заряд), т.к. только на них электрическое поле оказывает силовое действие, которое подчиняется закону Кулона.

2. Напряженность электрического поля.

Эл.поле как вид материи обладает энергией, массой, распространяется в пространстве с конечной скоростью и теоретических границ не имеет.

Практически считается, что поля нет если оно не оказывает заметного действия на пробные заряды.

Так как обнаружить поле можно с помощью силового действия на пробные заряды, то основной характеристикой электрического поля является напряженность.

Если в одну и ту же точку электрического поля вносить разные по величине пробные заряды, то между действующей силой и величиной пробного заряда прямая пропорциональная зависимость.

Коэффициентом пропорциональности между действующей силой и величиной заряда является напряженность Е.

Е = -формула расчета напряженности электрического поля, если q = 1 Кл, то | E | = | F |

Напряженность является силовой характеристикой точек электрического поля, т.к. она численно равна силе, действующей на заряд в 1 Кл в данной точке электрического поля.

Напряженность – величина векторная, вектор напряженности по направлению совпадает с вектором силы, действующей на положительный заряд в данной точке электрического поля.

3. Линии напряженности электрического поля. Однородное электрическое поле.

Для того, чтобы наглядно можно было изображать электрическое поле, т.е. графически, используют линии напряженности электрического поля. Это такие линии, иначе называемые силовыми линиями, касательные к которым по направлению совпадают с векторами напряженности в точках электрического поля через которые эти линии проходят,

Линии напряженности обладают следующими свойствами:

1) Начинаются на полож. зарядах, заканчиваются – на отрицательных, или начинаются на положител. зарядах и уходят в бесконечность, или приходят из бесконечности и заканчиваются на положительных зарядах..

2) Эти линии непрерывны и нигде не пересекаются.

3) Густота линий (кол-во линий на единицу площади поверхности) и напряженность электрического поля находятся в прямой и пропорциональной зависимости.

В однородном электрическом поле напряженность во всех точках поля одинакова, графически такие поля изображаются параллельными линиями на равном расстоянии друг от друга. Такое поле можно получить между двумя параллельными плоскими заряженными пластинами на маленьком расстоянии друг от друга.

4. Работа по перемещению заряда в электрическом поле.

Поместим в однородное электрическое поле электрический заряд. Со стороны поля на заряд будут действовать силы. Если заряд перемещать, то может совершаться работа.

Совершенная работа на участках:

А = q E d - формула расчета работы по перемещению заряда в электрическом поле.

Вывод: Работа по перемещению заряда в электрическом поле от формы траектории не зависит, а она зависит от величины перемещаемого заряда (q) , напряженности поля (Е), а также от выбора начальной и конечной точек перемещения (d).

Если заряд в электрическом поле перемещать по замкнутому контуру, то совершаемая работа будет равна 0. Такие поля называются потенциальными полями. Тела в таких полях обладают потенциальной энергией, т.о. электрический заряд в любой точке электрического поля обладает энергией и совершаемая работа в электрическом поле равна разности потенциальных энергий заряда в начальной и конечной точках перемещения.

5. Потенциал. Разность потенциалов. Напряжение.

Если в данную точку электрического поля помещать разные по величине заряды, то потенциальная энергия заряда и его величина находятся в прямой пропорциональной зависимости.

-(фи) потенциал точки электрического поля

примем

Потенциал является энергетической характеристикой точек электрического поля, т.к. он численно равен потенциальной энергии заряда в 1 Кл в данной точке электрического поля.

На равных расстояниях от точечного заряда потенциалы точек поля одинаковы. Эти точки образуют поверхность равного потенциала, и такие поверхности называются эквипотенциальными поверхностями. На плоскости это окружности, в пространстве – это сферы.

Напряжение

Формулы расчета работы по перемещению заряда в электрическом поле.

1В – напряжение между точками электрического поля при перемещении в которых заряда в 1Кл совершается работа в 1 Дж.

- формула, устанавливающая связь между напряженностью электрического поля, напряжением и разностью потенциалов.

Напряженность численно равна напряжению или разности потенциалов между двумя точками поля взятыми вдоль одной силовой линии на расстоянии 1м. Знак (-) означает, что вектор напряженности всегда направлен в сторону точек поля с уменьшающимся потенциалом.

В 1785 году французский физик Шарль Огюст Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ Н·м 2 /Кл 2 , где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2

Формулировка закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, так как только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Подобные силы называют центральными. Если через обозначить силу действующую на первый заряд со стороны второго, а через – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, . Обозначим через радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

Если знаки зарядов q 1 и q 2 одинаковы, то направление силы совпадает с направлением вектора ; в противном случае векторы и направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Шарль Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10 -8 Н.

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1. Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11. В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10 ). С помощью головки 1 это коромысло возвращалось в исходное положение. По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α . Сила же взаимодействия шариков была пропорциональна φ , то есть по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8 ) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков :

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ . Затем поворотом головки 1 уменьшался этот угол до γ 1 . Общий угол закручивания φ 1 = α 1 + (γ - γ 1)(α 1 – угол поворота головки). При уменьшении углового расстояния шариков до γ 2 общий угол закручивания φ 2 = α 2 + (γ - γ 2) . Было замечено, что, если γ 1 = 2γ 2 , ТО φ 2 = 4φ 1 , т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

Дата: 29.04.2015

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то