Самодельные схемы осциллографа на микроконтроллерах. Карманный осциллограф на микроконтроллере. Схема и печатка обновленная версии V2

Рассказать в:

Характеристики.

Несколько месяцев назад, во время сёрфинга в интернете, я наткнулся на осциллограф на микроконтроллере pic18f2550 и графическом дисплее на контроллере ks0108 . Это был сайт steven cholewiak. Я ещё никогда не видел осциллограф на одном микроконтроллере. Для меня это было воодушевляющим и я решил сделать нечто подобное, но на языке c. Лучшим решением для меня было использовать winavr, он базирован на основе общедоступного компилятора avr-gnu и отлично работает с avr studio 4. Графическая библиотека, которую я использовал, была создана мною специально для этого проекта. Она не для общего использования. Если вы хотите включить её в свой код, вам надо будет переделать её под ваши нужды. Максимальная частота которую может отобразить этот осциллограф это 5 кГц, для меандра. Для других сигналов (синус, треугольник) - 4 кГц.

Описание
Напряжение питания схемы - 12В. С помощью преобразователей оно преобразуется в 8.2 В для ic1 и 5 В для ic2 и ic3. Эта схема может измерять напряжение от -2.5 В до +2.5 В или от 0 В до +5 В в зависимости от состояния переключателя s1 (переменный или постоянный ток). Используя делитель 1:10 можно измерять в 10 раз большее напряжение. Кроме того с помощью s2 можно дополнительно разделить входное напряжение на 2.

Программирование atmega32 .
avr_oscilloscope.hex - прошивка для микроконтроллера. При прошивке выставьте fuse биты микроконтроллера на тактирование от внешнего кварца. После прошивки обязательно отключите jtag! Если этого не сделать, при включении вы увидите начальный экран и при переходе на экран осциллографа вы опять увидите начальный экран.

Калибровка.
Только две вещи нуждаются в калибровке. Это переменные резисторы p1 и p2. p1 нужен для перемещения луча в центр экрана, а p2 для настройки контрастности дисплея.

Использование.
Вы можете перемещать луч вверх или вниз по экрану, нажав кнопку s8 или s4, соответственно. Напряжение в 1 В соответствует одному делению на дисплее. С s7 и s3 вы можете увеличить или уменьшить скорость измерения. Нажав на кнопку s6 можно заморозить экран.

Печатная плата (101x160mm) и расположение компонентов.

У каждого в жизни был момент, когда понимаешь, « Надо покупать осциллограф! » . В моей практике,в большинстве случаев осциллограф нужен был для наблюдения за формой сигнала (или вообще показывал его наличие), тогда как основные измерения и исследования проводились на других приборах. Многие сейчас со мной поспорят, ну что поделаешь мне так удобней.Поэтому я решил сделать простой осциллограф-пробник. Он не будет отличаться хорошими характеристиками, главная цель, как можно популярней объяснить принцип работы! В конце статьи можно найти архив со всеми исходниками и материалами, которые потребуются. Итак начнем...

Цифровой сигнал - это массив чисел(если сразу по простому), каждое число это значение напряжения в данное время. Отсчеты делаются с определенной частотой, что и называется частотой дискретизации. Переводом из аналогового сигнала в дискретный и занимается АЦП. Существуют специальные микросхемы реализующие данную функцию, но микроконтроллеры специально снабжаются выводами с которых можно снимать значения. Откроем datasheet на Atmega8, там видим фразу: 8 каналов(или 6 для корпуса PDIP) 10-бит АЦП. Т.е. можно подвести 8 сигналов к каждому из этих каналов, и снимать с каждого свой сигнал! 10-бит же означает, что в каждый момент времени напряжение кодируется 2-чным числом из 10 цифр. Запомните этот факт.

Теперь, наш АЦП не понимает отрицательного напряжения, он производит измерения от 0-GND до AREF. Верхний порог может быть задан в регистре ADMUX как внутренний источник = 2,56 В или же может быть равен напряжению на ножке AVCC(что обычно и делается). Так же в ADLAR(смотри рисунок ниже) можно задавать порядок заполнения результата.

Адрес MUX 0x0000 соответствует входу ADC0, и по аналогии продолжается (если не поняли смотрите в даташите стр 199).

Теперь, запуск АЦП. АЦП может работать в 2 режимах. Первый - однократный режим (Single Conversation), в данном режиме мы подаем команду "Измерить!" он измеряет и выключается (но это так образно). Второй - постоянный запуск (Free Running), где мы настраиваем все, включаем и он работает а мы постоянно снимаем значения. Для реализации нашей задачи больше подходит второй режим, но так сложней контролировать измерение, поэтому будем использовать первый.

Настройка режима АЦП происходит в регистре ADCSRA.

Последнее, что осталось, регистры результатов ADCH - старший бит ADCL - младший. Про них рассказывать не буду, на картинке все видно и понятно.

С теорией все! Теперь напишем программку! Для отладки и обучения АЦП соберем схему в Proteus. Будем делать следующее:

Измерять уровень на входе;

Выводить уровень в двоичном коде (с помощью 8 светодиодов).

Для этого будем работать в режиме ADLAR=1 и считывать только старшие биты ADCH (т.е. 2 младших бита мы теряем, теряется точность, но в допустимых для меня пределах). Программа написана в AVR Studio.

Int main(void) { DDRD=0xFF; ADMUX = 0b01100000;//Настроили верхний порог на напряжение AVCC подвели 3,3В //ADLAR=1 и снимаем АЦП с ножки ADC0 ADCSRA = 0b10001101; //Настраиваем режим АЦП, включаем Single Mode, снимаем АЦП с входа ADC0 _delay_us(10); while(1) { ADCSRA |= 0x40;//Включаем АЦП while((ADCSRA & 0x10)==0);//ждем завершения PORTD=ADCH;//выводим результат } }

Прошиваем смотрим что получилось. Когда синус увеличивается от 0 до 3.3, мы видим как значение растет до максимума, но когда синус уходит в отрицательную часть у нас стабильно 0.

Для решения этой проблемы нам надо поднять наш сигнал на 1.6 В (половина всего диапазона), т.е. надо прибавить к сигналу половину питания, а сам сигнал в 2 раза ослабить, чтобы значение на входе не превышало наши рамки 0-3.3 В. НО! Так как статья учебная, и тут главное все вам объяснить пойдем проще! Для проверки работы нашего устройства мы будем использовать выход со звуковой карты (а на ПК запущен генератор сигналов), поэтому мы просто кидаем резистор 470 Ом между +3 В и входом АЦП. Так мы получим желаемое смещение.

В итоге, мы сигнал оцифровали. Осталось вывести его на экран.

Для своего проекта я выбрал экран от nokia1100, почему? Да потому что только его нашел в своем городе + на него есть макет в Proteus. Можно использовать и другие, главное данные у нас уже есть (научились их получать!).

Описывать как инициализировать экран я не буду (в интернете и так много доступной информации, не хочу повторяться + я расставил как можно больше комментариев в исходниках), а просто приведу текст программы с комментариями:

#include "nokia1100.h" // Подключаем библиотеку NOKIA1100 unsigned int n={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01}; unsigned int deltaU=4,deltaT=0; unsigned int buffer; int flag=0; void LCD_Signal(int index,int znachenie,int deltaU){//функция вывода пикселя в столбце znachenie=znachenie/deltaU; unsigned int h; for(unsigned int i=0;i<8;i++){ nlcd_GotoXY(index,7-i); h=1; for(unsigned int j=0;j<8;j++){ if(i*8+j==znachenie){h=0; nlcd_SendByte(DATA_LCD_MODE,n[j]);} } if(h) nlcd_SendByte(DATA_LCD_MODE,0x00); } } void function_buttons(){//обработка кнопок while(PINB==0x01) flag=1; while(PINB==0x02) flag=2; if(flag==1)deltaU+=2; if(flag==2) deltaT+=10; } int main(void) { nlcd_Init();//инициализация дисплея _delay_us(10); ADMUX =0b01100000;//Настроили АЦП от 0 до AVCC на который мы подаем 3,3 В ADCSRA = 0b10001100;//Настраиваем режим АЦП, вход настраиваем так же на ADC0 while(1) { DDRB=0x00; PORTB=0x00; for(int i=0;i<96;i++){ ADCSRA |= 0x40;//Включаем АЦП while((ADCSRA & 0x10)==0);//Ждем завершения buffer[i]=ADCH;//Записываем в буфер _delay_us(deltaT);//задержка для уменьшения частоты дискритизации } for(int i=0;i<96;i++){//Выводим буфер на экран function_buttons(); LCD_Signal(i,buffer[i],deltaU); } } }

Подключаемые файлы находятся в архиве к статье!

Любому радиолюбителю сложно представить свою лабораторию без такого важного измерительного прибора, как осциллограф. И, действительно, без специального инструмента, позволяющего анализировать и измерять действующие в цепи сигналы, ремонт большинства современных электронных устройств невозможен.

С другой стороны, стоимость этих приборов нередко превышает бюджетные возможности рядового потребителя, что вынуждает его искать альтернативные варианты или изготавливать осциллограф своими руками.

Варианты решения проблемы

Отказаться от покупки дорогостоящих электронных изделий удаётся в следующих случаях:

  • Использование для этих целей встроенной в ПК или ноутбук звуковой карты (ЗК);
  • Изготовление USB-осциллографа своими руками;
  • Доработка обычного планшета.

Каждый из перечисленных выше вариантов, позволяющих изготавливать осциллограф своими руками, применим не всегда. Для полноценной работы с самостоятельно собранными приставками и модулями необходимо выполнение следующих обязательных условий:

  • Допустимость определённых ограничений по измеряемым сигналам (по их частоте, например);
  • Наличие опыта обращения со сложными электронными схемами;
  • Возможность доработки планшета.

Так, осциллограф из звуковой карты, в частности, не позволяет измерять колебательные процессы с частотами, находящимися за пределами её рабочего диапазона (20 Гц-20 кГц). А для изготовления USB-приставки к ПК потребуется определённый опыт сборки и настройки сложных электронных устройств (как и при подключении к обычному планшету).

Обратите внимание! Вариант, при котором удаётся изготовить осциллограф из ноутбука или планшета при простейшем подходе, сводится к первому случаю, предполагающему использование встроенной ЗК.

Рассмотрим, как реализуется на практике каждый из указанных выше методов.

Использование ЗК

Для реализации этого способа получения изображения потребуется изготовить небольшую по габаритам приставку, состоящую всего из нескольких доступных для каждого электронных компонентов. С её схемой можно ознакомиться на приведённой ниже картинке.

Основное назначение такой электронной цепочки – обеспечить безопасное поступление внешнего исследуемого сигнала на вход встроенной звуковой карты, имеющей «собственный» аналого-цифровой преобразователь (АЦП). Используемые в ней полупроводниковые диоды гарантируют ограничение амплитуды сигнала на уровне не более 2-х Вольт, а делитель из соединенных последовательно резисторов позволяет подавать на вход напряжения с большими амплитудными значениями.

К плате с резисторами и диодами со стороны выхода подпаивается провод с имеющимся на ответном конце штекером на 3,5 мм, который вставляется в гнездо ЗК под наименованием «Линейный вход». Исследуемый сигнал подаётся на входные клеммы.

Важно! Длина соединительного шнура должна быть по возможности короче, что обеспечивает минимальные искажения сигнала при очень низких измеряемых уровнях. В качестве такого соединителя рекомендуется использовать двухжильный провод в медной оплётке (экране).

Хотя пропускаемые таким ограничителем частоты относятся к НЧ диапазону, указанная предосторожность способствует повышению качества передачи.

Программа для получения осциллограмм

Помимо технического оснащения, перед началом измерений следует подготовить соответствующее программное обеспечение (софт). Это значит, что на ПК нужно установить одну из утилит, разработанных специально для получения изображения осциллограммы.

Таким образом, всего за час или чуть больше удаётся создать условия для исследования и анализа электрических сигналов посредством стационарного ПК (ноутбука).

Доработка планшета

Использование встроенной карты

Для того чтобы приспособить обычный планшет под снятие осциллограмм можно воспользоваться уже описанным ранее способом подключения к звуковому интерфейсу. В этом случае возможны определённые затруднения, так как дискретного линейного входа для микрофона у планшета нет.

Решить эту проблему удаётся следующим образом:

  • Нужно взять гарнитуру от телефона, в составе которой должен иметься встроенный микрофон;
  • Затем следует уточнить разводку (распиновку) входных клемм на используемом для подключения планшете и сравнить её с соответствующими контактами на штекере гарнитуры;
  • При их совпадении можно смело подключать источник сигнала вместо микрофона, используя уже рассмотренную ранее приставку на диодах и резисторах;
  • В завершении останется установить на планшете специальную программу, способную анализировать сигнал на микрофонном входе и выводить на экран его график.

Преимущества данного способа подключения к компьютеру – это простота реализации и дешевизна. К его минусам следует отнести малый диапазон измеряемых частот, а также отсутствие стопроцентной гарантии безопасности для планшета.

Преодолеть эти недостатки удаётся за счёт применения специальных электронных приставок, подключаемых через Bluetooth-модуль или посредством Wi-Fi-канала.

Самодельная приставка к Bluetooth-модулю

Подключение по «Bluetooth» осуществляется с помощью отдельного гаждета, представляющего собой приставку со встроенным в неё микроконтроллером АЦП. За счёт использования самостоятельного канала обработки информации удаётся расширить полосу пропускаемых частот до 1 МГц; при этом величина входного сигнала может достигать 10 Вольт.

Дополнительная информация. Радиус действия такой самостоятельно изготовленной приставки может достигать 10-ти метров.

Однако собрать такое преобразовательное устройство в домашних условиях способен не каждый, что существенно ограничивает круг пользователей. Для всех не готовых к самостоятельному изготовлению приставки возможен вариант приобретения готового изделия, с 2010 года поступающего в свободную продажу.

Приведённые выше характеристики могут устроить домашнего мастера, занимающегося ремонтом не очень сложной низкочастотной аппаратуры. Для более трудоёмких ремонтных операций могут потребоваться профессиональные преобразовательные устройства с полосой пропускания до 100 МГц. Эти возможности может обеспечить Wi-Fi-канал, поскольку скорости протокола обмена данными в этом случае несравнимо выше, чем в «Bluetooth».

Осциллографы-приставки с передачей данных по Wi-Fi

Вариант передачи цифровых данных по этому протоколу заметно расширяет пропускные способности измерительного устройства. Работающие по данному принципу и свободно продающиеся приставки не уступают по своим характеристикам некоторым образцам классических осциллографов. Однако стоимость их также далека от того, чтобы считаться приемлемой для пользователей со средними доходами.

В заключение отметим, что с учётом приведённых выше ограничений вариант подключения по Wi-Fi также подходит лишь для ограниченного круга пользователей. Тем же, кто решил отказаться от этого способа, советуем попытаться собрать цифровой осциллограф , обеспечивающий те же характеристики, но за счёт подключения к USB-входу.

Данный вариант также очень сложен в реализации, так что тем, кто не до конца уверен в своих силах, разумнее будет приобрести имеющуюся в свободной продаже готовую USB-приставку.

Видео

Прежде чем приступить к описанию usb осциллограф своими руками на ATtiny45, необходимо отметить, что в конструкции используется только интегрированный АЦП преобразователь микроконтроллера ATmega45 с разрешением 10-бит, и в компьютер данные передаются посредством внедрения программного обеспечения V-USB с использованием драйверов USB HID, общая скорость передачи данных сильно ограничена.

Реальные выборки на обоих каналах до десятка выборок в секунду. Таким образом, это цифровой двухканальный низкоскоростной осциллограф на микроконтроллере.

V-USB является чисто программной реализации низкоскоростного USB протокол для процессоров серии AVR фирмы Atmel. Благодаря этим библиотекам можно с незначительными ограничениями применять USB практически с любым микроконтроллером, без необходимости использования дополнительного специального оборудования. Все библиотеки V-USB распространяются под лицензией GNU GPL v.2.

Два аналоговых входов способны измерять напряжение в диапазоне от 0 до +5 В. Широкий диапазон напряжения можно достичь путем добавления усилителя с высоким входным сопротивлением и переменным коэффициентом усиления (или входным резистивным делителем), или, по крайней мере с использованием обычного переменного резистора.

Всю основную работу выполняет запрограммированный микроконтроллер ATtiny45 . Работает он от внутреннего тактового генератора с предделителем с частотой 16,5 МГц. Для связи через интерфейс скоростного USB эта частота необходима, однако, это ведет к ограничению в минимальном напряжении питания, который должен быть выше, чем 4,5 В и, конечно, ниже, чем 5,5 В.

Но, поскольку выводы данных порта USB используют уровень напряжения от 0 до +3,3 В, то необходимо использовать ограничивающие резисторы R2, R3 и стабилитроны D2, D3. Такое решение, конечно, нельзя рекомендовать для коммерческого продукта, но для ознакомления с проблематикой USB и получение простой конструкции для домашнего использования вполне достаточно.

Входные каналы CH1 и CH2 на разъеме J2 блокируются конденсаторами С2 и C3 номиналом 100n в соответствии с требуемой спецификацией внутреннего АЦП. Светодиод D1 служит только для индикации работы и, следовательно, может быть исключен.

Список компонентов:

  • R1 — 270R
  • R2, R3 — 68R
  • R4 — 2k2
  • C1, C2, C3 — 100n
  • D1 — LED 3мм
  • D2, D3 — ZD (3,6 вольт)
  • IO1 — Attiny45-20PU
  • J1 — USB B 90

Программное обеспечение:

Скомпилированный файл HEX доступен для скачивания в конце статьи, а так же и исходный код на языке C. Установка конфигурации ограничивается выбором использовании внутреннего множителя PLL осциллятора.

Так как приложение использует HID драйвера (Human Interface Device), которые имеются практически в каждой операционной системе, отпадает необходимость в установке дополнительных драйверов.

Чтобы получить графическое отображение измеренных данных, используется программное обеспечение доступное для загрузки в конце статьи. Программное обеспечение не требует настройки, и после запуска оно автоматически найдет подключенное устройство.

(скачено: 1 273)

http://pandatron.cz/?1138&dvoukanalovy_usb_hid_osciloskop

Осциллограф это прибор, помогающий увидеть динамику колебаний. С его помощью можно диагностировать различные поломки и получать необходимые данные в радиоэлектронике. Раньше применялись осциллографы на транзисторных лампах. Это были весьма громоздкие приборы, которые подключались исключительно к встроенному или разработанному специально для них экрану.

Сегодня приборы для снятия основных частотных, амплитудных характеристик и формы сигнала представляют собой удобные портативные и компактнее устройства. Часто их выполняют как отдельную приставку, подключающуюся к компьютеру. Этот манёвр позволяет убрать из комплектации монитор, существенно снизив стоимость оборудования.

Как выглядит классический прибор можно увидеть, рассмотрев фото осциллографа в любой поисковой системе. В домашних условиях также можно смонтировать это устройство, используя недорогие радиодетали и корпуса с другого оборудования для более презентабельного вида.

Как можно получить осциллограф

Оборудование можно заполучить несколькими способами и все зависит исключительно от размера денежных средств, которые можно потратить на приобретение оборудования или деталей.


  • Купить готовый прибор в специализированном магазине или заказать его по сети;
  • Купить конструктор, например, широкой популярностью сейчас пользуются наборы радиодеталей, корпусов, которые продаются на китайских сайтах;
  • Самостоятельно собрать полноценный портативный прибор;
  • Смонтировать только приставку и щуп, а подключение организовать к персональному компьютеру.

Эти варианты приведены в порядке снижения затрат на оборудование. Покупка готового осциллографа будет стоить дороже всего, так как это уже доставленный и работающий блок со всеми необходимыми функциями и настройками, а в случае некорректной работы можно обратиться в центр продажи.

В конструктор входит схема простого осциллографа своими руками, а цена снижается за счет оплаты только себестоимости радиодеталей. В этой категории также необходимо различать более дорогие и простые по комплектации и функционалу модели.

Сборка прибора самому по имеющимся схемам и приобретенных в разных точках радиодеталях не всегда может оказаться дешевле, чем приобретение конструктора, поэтому необходимо предварительно оценивать стоимость затеи, ее оправданность.

Наиболее дешевым способом заполучить осциллограф станет спаять только приставку к нему. Для экрана использовать монитор компьютера, а программы для снятия и трансформации получаемых сигналов можно скачать с разных источников.


Конструктор осциллографа: модель DSO138

Китайские производители всегда славились умением создавать электронику для профессиональных потребностей с очень ограниченным функционалом и за довольно небольшие деньги.

С одной стороны такие приборы не способны полностью удовлетворить ряд потребностей человека, занимающегося радиоэлектроникой в профессиональном русле, однако начинающим и любителям таких «игрушек» будет более, чем достаточно.

Одной из популярных моделей китайского производства типа конструктор осциллографа считается DSO138. Прежде всего, у этого прибора невысокая стоимость, а поставляется он со всем комплектом необходимых деталей и инструкций, поэтому как правильно сделать осциллограф своими руками, используя имеющуюся в комплекте документацию вопросов возникать не должно.

Перед монтажом нужно ознакомиться с содержимым упаковки: плата, экран, щуп, все нужные радиодетали, инструкция для сборки и принципиальная схема.

Облегчает работу наличие практически на всех деталях и самой плате соответствующей маркировки, что действительно превращает процесс в собирание детского конструктора взрослым. На схемах и инструкции хорошо видно все нужные данные и можно разобраться, даже не владея иностранным языком.


На выходе должен получиться прибор с такими характеристиками:

  • Напряжение на входе: DC 9V;
  • Максимальное напряжение на входе: 50 Vpp (1:1 щуп)
  • Потребляемый ток 120 мА;
  • Полоса сигнала: 0-200KHz;
  • Чувствительность: электронное смещение с опцией вертикальной регулировки 10 мВ / дел - 5В / Div (1 - 2 - 5);
  • Дискретная частота: 1 Msps;
  • Сопротивление на входе: 1 MОм;
  • Временной интервал: 10 мкс / Div - 50s / Div (1 - 2 - 5);
  • Точность замеров: 12 бит.

Пошаговая инструкция сборки конструктора DSO138

Следует рассмотреть более детально подробные инструкции для изготовления осциллографа данной марки, ведь аналогичным образом осуществляется сборка других моделей.

Стоит отметить, что в данной модели плата поставляется сразу с впаянным 32-битным на M3 ядре микроконтроллере марки Cortex™. Работает он два 12-битных входа с характеристикой 1 μs и работает в максимальном частотном диапазоне до 72 МГц. Наличие этого девайса уже вмонтированным несколько облегчает задачу.

Шаг 1. Удобнее всего начинать монтаж с smd компонентов. Нужно учитывать правила при работе с паяльником и платой: не перегревать, держать не дольше 2 с, не смыкать между собой разные детали и дорожки, пользоваться паяльной пастой и припоем.

Шаг 2. Припаять конденсаторы, дросселя и сопротивления: нужно вставлять указанную деталь в отведенное на плате для нее место, отрезаем лишнюю длину ножки и запаиваем на плате. Главное не перепутать полярность конденсаторов и не сомкнуть паяльником или припоем соседние дорожки.


Шаг 3. Монтируем оставшиеся детали: переключатели и разъемы, кнопки, светодиод, кварц. Особенное внимание следует уделить стороне диодов и транзисторов. Кварц имеет металл в своем строении, потому нужно обеспечить отсутствие прямого контакта его поверхности с дорожками платы или позаботиться о диэлектрической подкладке.

Шаг 4. 3 разъема припаиваются к плате дисплея. После завершения манипуляций с паяльником нужно плату промыть спиртом без вспомогательных средств – никаких ваток, дисков или салфеток.

Шаг 5. Просушить плату и проверить насколько качественно была проведена пайка. Прежде, чем подсоединить экран, нужно припаять две перемычки к плате. В этом пригодятся имеющиеся откушенные выводы деталей.

Шаг 6. Для проверки работы нужно включить прибор в сеть с током от 200 мА и напряжением 9 В.

Проверка заключается в снятии показателей с:

  • Разъема 9 В;
  • Контрольной точки 3,3 В.

Если все параметры соответствуют нужным значениям, нужно отключить прибор от питания и установить JP4 перемычку.

Ша г 7. В 3 имеющихся разъему нужно вставить дисплей. К входу нужно подключить щуп для осциллографа, своими руками провести включение питания.

Результатом правильной установки и сборки станет появление на дисплее его номера, типа прошивки, ее версии и сайта разработчика. Спустя несколько секунд можно будет наблюдать синусоидные волны и шкалу при выключенном щупе.

Приставка для компьютера

При сборке этого простого прибора понадобится минимальное количество деталей, знаний и навыков. Принципиальная схема очень простая, разве, что нужно будет изготовить самому плату для сборки прибора.

Размеры приставки к осциллографу своими руками будет примерно как коробок для спичек или немножко больше, поэтому лучше всего использовать такого размера пластиковую емкость или бокс от батареек.

Поместив в него собранный прибор с готовыми выходами, можно приступать к организации работы с монитором компьютера. Для этого следует скачать программы «Осциллограф» и «Soundcard Oscilloscope». Можно протестировать их работу и выбрать ту, что понравилась больше.

Подключенный микрофон также сможет ретранслировать на подключенный осциллятор звуковые волны, программа будет отражать изменения. Подключается такая приставка к микрофонному или линейному входу и не требует никаких дополнительных драйверов.

Фото осциллографов своими руками

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то