Правило параллелограмма заключается в следующем. Сложение векторов. Как найти сумму векторов

Для правильного отображения законов природы в физике требуется соответствующий математический инструментарий.

В геометрии и физике есть величины, характеризующиеся и числовым значением, и направлением.

Их целесообразно изображать направленными отрезками или векторами .

У таких величин есть начало (отображается точкой) и конец, обозначаемый стрелкой. Длина отрезка называется (длиной).

  • скорость;
  • ускорение;
  • импульс;
  • сила;
  • момент;
  • силы;
  • перемещение;
  • напряженность поля и др.

Координаты на плоскости

Зададим на плоскости отрезок, направленный из точки, А (x1,y1) в точку В (x2,y2). Его координатами a (a1, a2) являются числа а1=x2-x1, а2=y2-y1.

Модуль рассчитывается по теореме Пифагора:

У нулевого вектора начало совпадает с концом. Координаты и длина равны 0.

Сумма векторов

Существуют несколько правил для расчета суммы

  • правило треугольника;
  • правило многоугольника;
  • правило параллелограмма.

Правило сложения векторов можно объяснить на задачах из динамики и механики. Рассмотрим сложение векторов по правилу треугольника на примере сил, воздействующих на точечное тело и последовательных перемещений тела в пространстве.

Допустим, тело переместилось сначала из точки A в точку B, а затем из точки B в точку C. Итоговое перемещение есть отрезок, направленный от начальной точки A к конечной точке C.

Результат двух перемещений или их сумма s = s1+ s2. Такой способ называется правилом треугольника .

Стрелки выстраивают в цепочку одну за другой, при необходимости осуществляя параллельный перенос. Суммарный отрезок замыкает последовательность. Его начало совпадает с началом первого, конец - с концом последнего. В иностранных учебниках данный метод называется «хвост к голове» .

Координаты результата c = a + b равны сумме соответствующих координат слагаемых c (a1+ b1, a2+ b2).

Сумма параллельных (коллинеарных) векторов также определяется по правилу треугольника.

Если два исходных отрезка перпендикулярны друг другу, то результат их сложения представляет собой гипотенузу построенного на них прямоугольного треугольника. Длина суммы вычисляется по теореме Пифагора.

Примеры :

  • Скорость тела, брошенного горизонтально, перпендикулярна ускорению свободного падения.
  • При равномерном вращательном движении линейная скорость тела перпендикулярна центростремительному ускорению.

Сложение трех и более векторов производят по правилу многоугольника , «хвост к голове»

Предположим, что к точечному телу приложены силы F1 и F2.

Опыт доказывает, что совокупное воздействие этих сил равнозначно действию одной силы, направленной по диагонали построенного на них параллелограмма. Эта равнодействующая сила равна их сумме F = F1 + F 2. Приведенный способ сложения называется правилом параллелограмма .

Длина в этом случае вычисляется по формуле

Где θ – угол между сторонами.

Правила треугольника и параллелограмма взаимозаменяемы. В физике чаще применяют правило параллелограмма, так как направленные величины сил, скоростей, ускорений обычно приложены к одному точечному телу. В трехмерной системе координат применяется правило параллелепипеда.

Элементы алгебры

  1. Сложение является двоичной операцией: за один раз можно сложить только пару.
  2. Коммутативность : сумма от перестановки слагаемых не изменяется a + b = b + a. Это ясно из правила параллелограмма: диагональ всегда одна и та же.
  3. Ассоциативность : сумма произвольного числа векторов не зависит от порядка их сложения (a + b)+ c = a +(b + c).
  4. Суммирование с нулевым вектором не меняет ни направление, ни длину: a +0= a .
  5. Для каждого вектора есть противоположный . Их сумма равна нулю a +(-a)=0, а длины совпадают.

Вычитание направленного отрезка равносильно прибавлению противоположного. Координаты равны разности соответствующих координат. Длина равна:

Для вычитания можно использовать видоизмененное правило треугольника.

Умножение на скаляр

Результатом умножения на скаляр будет вектор.

Координаты произведения получаются перемножением на скаляр соответствующих координат исходного.

Скаляр - числовая величина со знаком плюс или минус, больше или меньше единицы.

Примеры скалярных величин в физике:

  • масса;
  • время;
  • заряд;
  • длина;
  • площадь;
  • объем;
  • плотность;
  • температура;
  • энергия.

Примеры :

  • Перемещение равномерно движущегося тела равно произведению времени и скорости s = vt .
  • Импульс тела - масса, умноженная на скорость p = mv .
  • Второй закон Ньютона . Произведение массы тела на ускорение равно приложенной равнодействующей силе ma=F.
  • Сила, действующая на заряженную частицу в электрическом поле, пропорциональна заряду F = qE.

Скалярное произведение направленных отрезков a и b равно произведению модулей на косинус угла между ними. Скалярное произведение взаимно перпендикулярных отрезков равно нулю.

Пример :

Работа является скалярным произведением силы и перемещения A = Fs .

Скалярная величина – это физическая величина, которая имеет только одну характеристику – численное значение.

Скалярная величина может быть положительной или отрицательной.

Примеры скалярных величин: температура, масса, объем, время, плотность. Математические действия со скалярными величинами – это алгебраические действия.

Векторная величина – это физическая величина, которая имеет две характеристики:

1) численное значение, которое всегда положительно (модуль вектора);

Примеры векторных физических величин: скорость, ускорение, сила.

Векторная величина обозначается латинской буквой и стрелкой над этой буквой. Например:

Модуль вектора обозначается так:

или - модуль вектора ,

или - модуль вектора ,

или - модуль вектора ,

На рисунке (графически) вектор изображается направленным отрезком прямой линии. Модуль вектора равен длине направленного отрезка в заданном масштабе.

2.2. Действия с векторами

Математические действия с векторными величинами – это геометрические действия.

2.2.1 Сравнение векторов

Равные векторы. Два вектора равны, если они имеют:

    равные модули,

    одинаковые направления.

Противоположные векторы. Два вектора противоположны, если они имеют:

    равные модули,

    противоположные направления.

2.2.2 Сложение векторов

Мы можем сложить два вектора геометрически по правилу параллелограмма и по правилу треугольника.

Пусть заданы два вектора и(см. рис.). Найдем сумму этих векторов+=. Величиныи- это составляющие векторы, вектор- это результирующий вектор.

Правило параллелограмма для сложения двух векторов:

1. Нарисуем вектор.

2. Нарисуем вектор так, что его начало совпадает с началом вектора; угол между векторами равен(см. рисунок).

3. Через конец вектора .

4. Через конец вектора проведем прямую линию, параллельную вектору.

Мы построили параллелограмм. Стороны этого параллелограмма – составляющие векторы и.

5. Проведем диагональ параллелограмма из общей точки начала вектора и начала вектора.

6. Модуль результирующего вектора равен длине диагонали параллелограмма и определяется по формуле:

начало вектора совпадает с началом вектораи началом вектора(направление векторапоказано на рисунке).

Правило треугольника для сложения двух векторов:

1. Нарисуем составляющие векторы итак, что начало векторасовпадает с концом вектора. При этом угол между векторами равен.

2. Результирующий вектор направлен так, что его начало совпадает с началом вектора, а конец совпадает с концом вектора.

3. Модуль результирующего вектора находим по формуле:

2.2.3 Вычитание векторов

Вычитание векторов – это действие, обратное сложению:

Найти разность вектора и вектора- это тоже самое, что найти сумму вектораи вектора
, противоположного вектору. Мы можем найти вектор разности геометрически по правилу параллелограмма или по правилу треугольника (см. рис.).

Правило параллелограмма.

Стороны параллелограмма - вектор и вектор -; диагональ параллелограмма - вектор разности
.

Правило треугольника.

Вектор разности соединяет конец вектораи конец вектора(начало векторасовпадает с концом вектора).

2.2.4 Умножение вектора на скаляр

Пусть заданы вектор и скалярn. Найдем произведение вектора и скалярного вектораn.

В результате умножения вектора на скаляр мы получаем новый вектор :

Направление вектора такое же, как направление векторапри
.

Направление вектора противоположно направлению векторапри
.

Модуль вектора вn раз больше модуля вектора, если
.

2.3. Скалярное и векторное произведения

2.3.1 Скалярное произведение

Из двух векторов иможно образовать скаляр по правилу:

Это выражение называется скалярным произведением векторов и
, или
.

Следовательно, . =
.

По определению скалярное произведение обладает следующими свойствами:

1)
,

2)
,

3)

2.3.2 Векторное произведение

Из двух векторов
и
можно образовать новый вектор:

, где

Модуль нового результирующего вектора находим по формуле:

.

Эта операция называется векторным произведением векторов ии обозначается одним из символов
или
.

Также общеизвестна формула

,

где - угол между векторамии.

Направление вектора можно найти, используя следующий прием. Мысленно совмещаем продольную ось буравчика (правого винта, штопора) с перпендикуляром к плоскости, в которой лежат перемножаемые векторы (в данном примере – векторы и ). Затем начинаем вращать головку винта (ручку штопора) по направлению кратчайшего поворота от первого сомножителя ко второму, то есть от вектора к вектору . Направление движения тела винта и будет являться направлением вектора . Этот прием называетсяправилом правого винта или правилом буравчика (см. рис.).

В терминах векторного произведения выражаются момент силы, момент импульса и др. Говоря о векторе, всегда имеем ввиду его компоненты. Вектор, в отличие от скаляра, определяется тремя числами. Поэтому такие операции как сложение, вычитание, скалярное и векторное произведения сводятся к привычным действиям с компонентами.

На тему «Сложение векторов» отводится несколько уроков. И это неслучайно. Объем этой темы велик, поэтому было целесообразно разбить ее на несколько уроков. На одном уроке, который также имеется в нашей базе, рассматривается понятие суммы двух векторов и вводится «правило треугольника». Данный видеоурок содержит законы сложения векторов и знакомит обучающихся с «правилом параллелограмма». Но и это еще не все. В нашей базе можно найти еще и другие уроки, связанные с векторами и суммой векторов.

Данный видеоурок заключен во временные рамки 3:17 минут. Он начинается с того, что предлагается доказать теорему. Согласно условию теоремы, для любых трех векторов выполняются переместительный и сочетательный законы. Автор предлагает каждый закон доказать по отдельности. Сначала он доказывает переместительный закон. Следующим остается - сочетательный.

В ходе доказательства автор подробно расписывает каждое свое действие. Автор во время доказательства строит чертеж. Все действия он выполняет медленно, чтобы обучающиеся смогли уловить смысл изложенного и законспектировать записи в тетрадях. Параллельно с построениями ведутся подробные записи на математическом языке, что позволяет формировать математическую грамотность школьников.

Для доказательства обоих законов необходимы навыки построения векторов. Важны также знания, полученные на предыдущих уроках, когда обучающиеся знакомились с «правилом треугольника» суммы векторов. Это правило применяется при доказательстве законов.

После того, как оба закона доказаны, автор обращает внимание слушателей на то, что во время доказательства первого закона, было обосновано «правило параллелограмма» суммы неколлинеарных векторов. И тут же дается формулировка данного правила. Одновременно с произношением формулировки, автор ведет построение суммы векторов по этому правилу, чтобы еще раз показать обучающимся принцип работы этого правила.

Этот видеоурок может использоваться обучающимися для самостоятельной подготовки к уроку. Более того, урок можно транслировать столько раз, сколько будет достаточно для успешного запоминания материала, а также отработки навыков построения суммы векторов по «правилу параллелограмма».

Сложение сил производят, используя правило сложения векторов. Или так называемое правило параллелограмма. Так как сила изображается в виде вектора, то есть это отрезок, длинна которого показывает числовое значение силы, а направление указывает направление действия силы. То складывают силы, то есть вектора, с помощью геометрического суммирования векторов.

С другой стороны сложение сил это нахождение равнодействующей нескольких сил. То есть когда на тело действует несколько разных сил. Разных как по величине, так и по направлению. Необходимо найти результирующую силу, которая буде действовать на тело в целом. В этом случае можно силы складывать попарно использую правило параллелограмма. Сначала складываем две силы. К их равнодействующей прибавляем еще одну. И так до тех пор, пока не сложатся все силы.

Рисунок 1 - Правило параллелограмма.


Правило параллелограмма можно описать так. Для двух сил выходящих из одной точки, и имеющих между собой угол отличный от нуля или 180 градусов. Можно построить параллелограмм. Путем переноса начала одного вектора в конец другого. Диагональ этого параллелограмма и будет равнодействующей этих сил.

Но также можно использовать и правило многоугольника сил. В этом случае выбирается начальная точка. Из этой точки выходит первый вектор силы действующей на тело, далее к его концу добавляется следующий вектор, методом параллельного переноса. И так далее до тех пор, пока не будет получен многоугольник сил. В конце концов, равнодействующей всех сил в такой системе будет вектор, проведенный из начальной точки в конец последнего вектора.

Рисунок 2 - Многоугольник сил.


В случае если тело движется под действием нескольких сил приложенных к разным точкам тела. Можно считать, что оно движется под действием равнодействующей силы приложенной к центру масс данного тела.

Наряду со сложением сил, для упрощения расчетов движения, применяется и метод разложения сил. Как видно из названия, суть метода заключается в том, что одну силу, действующую на тело, раскладывают на составляющие силы. В этом случае составляющие силы оказывают на тело такое же воздействие, как и изначальная сила.

Разложение сил также производится по правилу параллелограмма. Они должны выходить из одной точки. Из той же точки, из которой выходит разлагаемая сила. Как правило, разлагаемую силу представляют в виде проекций на перпендикулярные оси. К примеру, как сила тяжести и сила трения, действующие на брусок, лежащий на наклонной плоскости.

Рисунок 3 - Брусок на наклонной плоскости.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то