Нечеткие множества примеры решения. Нечеткие множества и их особенности

Нечеткое множество представляет собой совокупность элементов произвольной природы, относительно которых нельзя с полной определенностью утверждать – принадлежит ли тот или иной элемент рассматриваемой совокупности данному множеству или нет. Другими словами, нечеткое множество отличается от обычного множества тем, что для всех, или части его элементов не существует однозначного ответа на вопрос: «Принадлежит или не принадлежит тот или иной элемент рассматриваемому нечеткому множеству»

Для построения нечетких моделей систем само понятие нечеткого множества следует определить строго, чтобы исключить неоднозначность толкования тех или иных его свойств. Наиболее естественным и интуитивно понятным является задание области значений подобной функции как интервал действительных чисел, заключенных между 0 и 1 (включая и сами эти значения).

Математическое определение нечеткого множества. Формально нечеткое множество определяется как множество упорядоченных пар или кортежей вида:, гдеявляется элементом некоторого универсального множества, или универсума, а– функция принадлежности, которая ставит в соответствие каждому из элементовнекоторое действительное число из интервала, т.е. данная функция определяется в форме отображения:

При этом значение для некоторогоозначает, что элементопределенно принадлежит нечеткому множеству, а значениеозначает, что элементопределенно не принадлежит нечеткому множеству.

Формально конечное нечеткое множество в общем случае имеет вид:

Универсум - это множество, содержащее в рамках некоторого контекста все возможные элементы. Формально удобно считать, что функция принадлежности универсума как нечеткого множества тождественно равна единице для всех без исключения элементов:.

Пустое нечеткое множество , или множество, которое не содержит ни одного элемента, обозначаетсяи формально определяется как такое нечеткое множество, функция принадлежности которого тождественно равна нулю для всех без исключения элементов:

Формальное определение нечеткого множества не накладывает никаких ограничений на выбор конкретной функции принадлежности для его представления. Однако на практике удобно использовать те из них, которые допускают аналитическое представление в виде некоторой простой математической функции. Это упрощает не только соответствующие численные расчеты, но и сокращает вычислительные ресурсы, необходимые для хранения отдельных значений этих функций принадлежности.

Функция принадлежности – математическая функция, определяющая степень, с которой элементы некоторого множества принадлежат заданному нечеткому множеству. Данная функция ставит в соответствие каждому элементу нечеткого множества действительное число из интервалаЗадать конкретное нечеткое множество означает определить соответствующую ему функцию принадлежности.

При построении функций принадлежности для нечетких множеств следует придерживаться некоторых правил, которые предопределяются характером неопределенности, имеющей место при построении конкретных нечетких моделей.

С практической точки зрения с каждым нечетким множеством удобно ассоциировать некоторое свойство, которое характеризует рассматриваемую совокупность объектов универсума. При этом по аналогии с классическими множествами рассматриваемое свойство может порождать некоторый предикат, который вполне естественно назвать нечетким предикатом. Данный нечеткий предикат может принимать не одно из двух значений истинности («истина» или «ложь»), а целый континуум значений истинности, которые для удобства выбираются из интервала При этом значению «истина» по-прежнему соответствует число 1, а значению «ложь» - число 0.

Содержательно это означает следующее: чем в большей степени элемент обладает рассматриваемым свойством, тем более близко к 1 должно быть значение истинности соответствующего нечеткого предиката. И наоборот, чем в меньшей степени элементобладает рассматриваемым свойством, тем более близко к 0 должно быть значение истинности этого нечеткого предиката. Если элементопределенно не обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «ложь» (или число 0). Если же элементопределенно обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «истина» (или число 1).

Тогда в общем случае задание нечеткого множества с использованием специального свойства эквивалентно заданию такой функции принадлежности, которая содержательно представляет степень истинности соответствующего одноместного нечеткого предиката.

Понятие нечеткого отношения наряду с понятием самого нечеткого множества следует отнести к фундаментальным основам всей теории нечетких множеств. На основе нечетких отношений определяется целый ряд дополнительных понятий, используемых для построения нечетких моделей сложных систем.

В общем случае нечетким отношением, заданном на множествах (универсумах) , называется некоторое фиксированное нечеткое подмножество декартова произведения этих универсумов. Другими словами, если обозначить произвольное нечеткое отношение через, то по определению, где- функция принадлежности данного нечеткого отношения, которая определяется как отображение. Черезобозначен кортеж изэлементов, каждый из которых выбирается из своего универсума:

Нечеткая логика, которая служит основой для реализации методов нечеткого управления, более естественно описывает характер человеческого мышления и ход его рассуждений, чем традиционные формально-логические системы. Именно поэтому изучение и использование математических средств, для представления нечеткой исходной информации позволяет строить модели, которые наиболее адекватно отражают различные аспекты неопределенности, постоянно присутствующей в окружающей нас реальности.

Нечеткая логика предназначена для формализации человеческих способностей к неточным или приближенным рассуждениям, которые позволяют более адекватно описывать ситуации с неопределенностью. Классическая логика по своей сути игнорирует проблему неопределенности, поскольку все высказывания и рассуждения в формальных логических системах могут иметь только значение «истина» (И ,1) или значение «ложь» (Л ,0). В отличие от этого в нечеткой логике истинность рассуждений оценивается в некоторой степени, которая может принимать и другие отличныезначения. Нечеткая логика использует основные понятия теории нечетких множеств для формализации неточных знаний и выполнения приближенных рассуждений в той или иной предметной области.

В предложенной Л.Заде варианте нечеткой логики множество истинностных значений высказываний обобщается до интервала действительных значений , что позволяет высказыванию принимать любое значение истинности из этого интервала. Это численное значение является количественной оценкой степени истинности высказывания, относительно которого нельзя с полной уверенностью заключить о его истинности или ложности. Использование в качестве множества истинностных значений интервалапозволяет построить логическую систему, в рамках которой оказалось возможным выполнять рассуждения с неопределенностью и оценивать истинность высказываний.

Исходным понятием нечеткой логики является понятие элементарного нечеткого высказывания.

Элементарное нечеткое высказывание – это повествовательное предложение, выражающее законченную мысль, относительно которой мы можем судить об ее истинности или ложности только с некоторой степенью уверенности. В нечеткой логикестепень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала, причем 0 и 1 являются предельными значениями степени истинности и совпадают со значениями «ложь» и «истина» соответственно.

Нечеткая импликация или импликация нечетких высказываний А и В (читается – «ЕСЛИ А, ТО В») – называется бинарная логическая операция, результат которой является нечетким высказыванием, истинность которого может принимать значение, например, определяемое формулой предложенной Э.Мамдани:

Эту форму нечеткой импликации также называют нечеткой импликацией Мамдани или нечеткой импликациейминимума корреляции.

Классическая нечеткая импликация, предложенная Л.Заде:

Продукционные системы были разработаны в рамках исследований по методам искусственного интеллекта и нашли широкое применение для представления знаний и вывода заключений в экспертных системах, основанных на правилах. Поскольку нечеткий вывод реализуется на основе нечетких продукционных правил, рассмотрение базового формализма нечетких продукционных моделей приобретает самостоятельное значение. При этом нечеткие правила продукций не только во многом близки к логическим моделям, но и, что наиболее важно, позволяют адекватно представить практические знания экспертов в той или иной проблемной области.

Правило нечеткой продукции – под этим правилом понимается выражение вида:

где () – имя нечеткой продукции;- сфера применения нечеткой продукции;- условие применимости ядра нечеткой продукции;- ядро нечеткой продукции, в котором- условие ядра (или антецедент);- заключение ядра (или консеквент);- знак логической секвенции (или следования);- метод или способ определения количественного значения степени истинности заключения ядра;- коэффициент определенности или уверенности нечеткой продукции;- постусловия продукции.

Ядро продукции записывается в виде: , где А, В – некоторые выражения нечеткой логики, которые наиболее часто представляются в форме нечетких высказываний.

Продукционная нечеткая система представляет собой некоторое согласованное множество отдельных нечетких продукций в форме.

По традиции четкие множества принято иллюстрировать кругами с резко оконтуренными границами. Нечеткие же множества – это круги, образованные отдельными точками: в центре круга точек много, а ближе к периферии их густота уменьшается до нуля; круг как бы растушевывается на краях. Такие «нечеткие множества» можно увидеть... в тире – на стене, куда вывешиваются мишени. Следы от пуль образуют случайные множества, математика которых известна. Оказалось, что для оперирования нечеткими множествами годится уже давно разработанный аппарат случайных множеств...

Понятие нечеткого множества – попытка математической формализации нечеткой информации с целью ее использования при построении математических моделей сложных систем. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно, принадлежать данному множеству с различной степенью.

Один из простейших способов математического описания нечеткого множества – характеризация степени принадлежности элемента множеству числом, например, из интервала . Пусть Х – некоторое множество элементов. В дальнейшем мы будем рассматривать подмножества этого множества.

Нечетким множеством А в Х называется совокупность пар вида (x, m A (x) ), где xÎX, а m А – функция x ® , называемая функцией принадлежности (membership function) нечеткого множества А . Значение m A (x) этой функции для конкретного x называется степенью принадлежности этого элемента нечеткому множеству А .

Как видно из этого определения, нечеткое множество вполне описывается своей функцией принадлежности, поэтому мы часто будем использовать эту функцию как обозначение нечеткого множества.

Обычные множества составляют подкласс класса нечетких множеств. Действительно, функцией принадлежности обычного множества B ÌX является его характеристическая функция: m В (x) =1, если x ÎB и m В (x) =0, если x ÏB. Тогда в соответствии с определением нечеткого множества обычное множество В можно также определить как совокупность пар вида (x, m В (x) ). Таким образом, нечеткое множество представляет собой более широкое понятие, чем обычное множество, в том смысле, что функция принадлежности нечеткого множества может быть, вообще говоря, произвольной функцией или даже произвольным отображением.

Мы говорим нечеткое множество . А множество чего? Если быть последовательным, то приходится констатировать, что элементом нечеткого множества оказывается... новое нечеткое множество новых нечетких множеств и т.д. Обратимся к классическому примеру – к куче зерна . Элементом этого нечеткого множества будет миллион зерен , например. Но миллион зерен это никакой не четкий элемент , а новое нечеткое множество . Ведь считая зерна (вручную или автоматически), немудрено и ошибиться – принять за миллион 999 997 зерен, например. Тут можно сказать, что элемент 999 997 имеет значение функции принадлежности к множеству “миллион”, равное 0.999997. Кроме того, само зерно – это опять же не элемент, а новое нечеткое множество: есть полноценное зерно, а есть два сросшихся зерна, недоразвитое зерно или просто шелуха. Считая зерна, человек должен какие-то отбраковывать, принимать два зерна за одно, а в другом случае одно зерно за два. Нечеткое множество не так-то просто запихнуть в цифровой компьютер с классическими языками: элементами массива (вектора) должны быть новые массивы массивов (вложенные вектора и матрицы, если говорить о Mathcad ). Классическая математика четких множеств (теория чисел, арифметика и т.д.) – это крюк, с помощью которого человек разумный фиксирует (детерминирует) себя в скользком и нечетком окружающем мире. А крюк, как известно, – инструмент довольно грубый, нередко портящий то, за что им цепляются. Термины, отображающие нечеткие множества – «много», «слегка», «чуть-чуть» и т.д. и т.п., – трудно «запихнуть» в компьютер еще и потому, что они контекстно зависимы . Одно дело сказать «Дай мне немного семечек» человеку, у которого стакан семечек, а другое дело – человеку, сидящему за рулем грузовика с семечками.



Нечеткое подмножество А множества Х характеризуется функцией принадлежности m A : Х→ , которая ставит в соответствие каждому элементу x ÎX число m A (x) из интервала , характеризующее степень принадлежности элемента х подмножеству А . Причем 0 и 1 представляют соответственно низшую и высшую степень принадлежности элемента к определенному подмножеству.

Дадим основные определения.

· Величина sup m A (x ) называется высотой нечеткого множества A . Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности равна 1. При sup m A (x )<1 нечеткое множество называется субнормальным.

· Нечеткое множество называется пустым , если его функция принадлежности равна нулю на всем множестве Х , т.е. m 0 (x)= 0 " x ÎX .

Нечеткое множество пусто , если " x ÎE m A (x )=0 . Непустое субнормальное множество можно нормализовать по формуле

(рис. 1).

Рис.1. Нормализация нечеткого множества с функцией принадлежности. .

Носителем нечеткого множества А (обозначение supp A ) с функцией принадлежности m A (x) называется множество вида suppA ={x|x ÎX, m A (x)> 0}. Для практических приложений носители нечетких множеств всегда ограничены. Так, носителем нечеткого множества допустимых режимов для системы может служить четкое подмножество (интервал), для которого степень допустимости не равна нулю (рис.2).

Рис. 3. Ядро, носитель и α- сечение нечеткого множества

Значение α называют α -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) α -уровне.

Рис. 3 иллюстрирует определения носителя, ядра, α- сечения и α- уровня нечеткого множества.

Нечёткое (или размытое, расплывчатое) множество - понятие, введённое Л. Заде, который расширил классическое (канторовское) понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале , а не только значения 0 или 1.

Определение : нечеткое множество (a fuzzy set)

Пусть C есть некоторое универсальное множество (универсум). Тогда нечеткое множество A в C определяется как упорядоченное множество пар

где называется функцией принадлежности (ФП) элемента х к нечеткому множеству A .

ФП приписывает каждому элементу из C значение из интервала , которое называется степенью принадлежности х к A или нечеткой мерой.

Нечеткая мера может быть рассмотрена как степень истинности того, что элемент х принадлежит A .

Определение : основа нечеткого множества (a support of a fuzzyset)

Основой нечеткого множества A является множество всех точек таких, что .

Таким образом, определение нечеткого множества является расширением определения классического множества, в котором характеристическая функция может принимать непрерывные значения между 0 и 1. Универсум C может быть дискретным или непрерывным множеством.

Для представления ФП обычно используется несколько типов параметрических функций.

Типовые представления ФП

Треугольные ФП (рис. 2.2, а) описываются тремя параметрами {a, b, c }, которые определяют x координаты трех углов треугольника следующим образом:

Трапециидальные ФП (рис. 2.2, в) описываются четырьмя параметрами {a,b,c,d }, которые определяют x координаты четырех углов трапеции следующим образом:

Рис. 2.2. Треугольная и трапецеидальная ФП

Гауссовские ФП (рис. 2.3) специфицируются двумя параметрами и представляют собой следующую функцию: .

Рис. 2.3. Гауссовская ФП

Лингвистические переменные

Одним из фундаментальных понятий, введенных также Л.Заде, является понятие лингвистической переменной.

Определение : лингвистическая переменная (ЛП) представляет собой следующую пятерку , где – имя переменной, – терм-множество, задающее множество значений ЛП, являющихся языковыми выражениями (синтагмами), X – универсум, G – синтаксическое правило, используя которое мы можем формировать синтагмы , M – семантическое правило, используя которое каждой синтагме приписывается ее значение, являющееся нечетким множеством в универсуме X .

Примером ЛП может служить, например, переменная = «возраст». Ее терм-множество может быть, например, следующим:

(возраст) = {очень молодой , молодой , более или менее молодой , средних лет , старый , очень старый }.

Универсумом для данной ЛП может служить некоторое множество действительных чисел, например, интервал . Семантическое правило М приписывает термам из T (возраст) значения, являющиеся различными модификациями нечетких множеств.

Вернемся к нашему примеру управления движением автомобиля и опишем лингвистические значения в выше приведенных правилах с помощью нечетких множеств. Рассмотрим следующие лингвистические переменные:

x расстояние между машинами;

y скорость впереди едущей машины;

z – ускорение управляемого автомобиля.

ФП должны быть определены в соответствии с рассматриваемой ситуацией управления. Так, например, скорость равная 70 км/час является «большой» в ситуации движения по городской дороге и может рассматриваться как «небольшая» в ситуации движения по скоростному шоссе.

Определим для нашего примера следующие универсумы:

[м], [км/час],

[км/час 2 ].

На рис. 2.4 показаны ФП для описания лингвистических значений «небольшая» (slow) и «большая» (fast) для скорости и «близкое» (short) и «большое» (long) для расстояния.

Рис. 2.4. Нечеткие множества для задачи управления простейшим движением автомобиля

Различия между классическим и нечетким представлением множества

Обсудим эти различия с использованием следующего примера. Рассмотрим классическое и нечеткое представления множества для описания лингвистического значения «короткий» (для расстояния).

На рис. 2.5 показаны различия между классическим и нечетким представлением множества A для данного примера.

Рис. 2.5. Классическое и нечеткое представления множества A

Определим классическое представление множества A так, как показано на рис. 2.5 слева. В этом случае характеристическая функция будет:

Нечеткое представление множества A показано на рис. 2.5 справа. В этом случае функция принадлежности ФП выглядит следующим образом:

Зададим теперь следующий вопрос : принадлежит ли точка м или точка м множествуA ?

С точки зрения классического представления ответ «нет». С точки зрения человеческого восприятия ответ скорее «да», чем «нет». С точки зрения нечеткого представления ответ «да».

Таким образом, данный простой пример наглядно показывает, что нечеткий подход более близок к естественному, человеческому, и обладает большей гибкостью, нежели классический подход.

С помощью нечетких множеств мы можем описывать нечеткие границы.

Основные операции в теории нечетких множеств

Определим основные нечеткие операции следующим образом.

Определение : нечеткое подмножество (Fuzzy Containment или Fuzzy Subset). Нечеткое множество A содержится в нечетком множестве B (или, эквивалентно, A является подмножеством B ) тогда и только тогда, когда для всех . В символьной форме:

Определение :эквивалентность нечетких множеств (Equality of Fuzzy Sets). Эквивалентность (равенство) нечетких множеств A и B определяется следующим образом:

Для каждого .

Определение :нечеткое объединение или нечеткая дизъюнкция (Fuzzy Union).Объединение двух нечетких множеств A и B (в символьной форме пишется как или A OR B или A B) есть нечеткое множество , ФП которого определяется следующим образом:

Определение :нечеткое пересечение (Fuzzy Intersection).Пересечение двух нечетких множеств A и B (в символьной форме записывается как , или C = A AND B , или C = A B) есть нечеткое множество , ФП которого определяется следующим образом:

Определение :нечеткое дополнение. Дополнение A (в символьной форме пишется как или ) есть нечеткое, ФП которого определяется следующим образом:

На рис 2.6 показаны примеры нечетких операций над нечеткими множествами.

Рис. 2.6. Примеры нечетких операций над нечеткими множествами

Особенности нечетких множеств

Отметим важные особенности теории нечетких множеств.

1) Закон исключенного третьего и закон контрадикции , где - пустое множество верны в классической теории множеств, однако в теории нечетких множеств в общем случае они не выполняются .

Закон исключенного третьего и закон контрадикции в нечеткой теории выглядят следующим образом: и .

2) В классической теории множеств точка из множества A может иметь одну из двух возможностей: or . В нечеткой теории точка может принадлежать множеству A и одновременно не принадлежать A (т.е. принадлежать множеству ) с различными значениями функций принадлежности и , как показано на рис. 2.7.

При помощи нечетких множеств можно формально определить неточные и многозначные понятия, такие как «высокая температура», «молодой человек», «средний рост» либо «большой город». Перед формулированием определения нечеткого множества необходимо задать так называемую область рассуждений (universe of discourse). В случае неоднозначного понятия «много денег» большой будет признаваться одна сумма, если мы ограничимся диапазоном и совсем другая - в диапазоне . Область рассуждений, называемая в дальнейшем пространством или множеством, будет чаще всего обозначаться символом . Необходимо помнить, что - четкое множество.

Определение 3.1

Нечетким множеством в некотором (непустом) пространстве , что обозначается как , называется множество пар

Функция принадлежности нечеткого множества . Эта функция приписывает каждому элементу степень его принадлежности к нечеткому множеству , при этом можно выделить три случая:

1) означает полную принадлежность элемента к нечеткому множеству , т.е. ;

2) означает отсутствие принадлежности элемента к нечеткому множеству , т.е.;

3) означает частичную принадлежность элемента к нечеткому множеству .

В литературе применяется символьное описание нечетких множеств. Если - это пространство с конечным количеством элементов, т.е. , то нечеткое множество записывается в виде

Приведенная запись имеет символьный характер. Знак «–» не означает деления, а означает приписывание конкретным элементам степеней принадлежности . Другими словами, запись

означает пару

Точно также знак «+» в выражении (3.3) не означает операцию сложения, а интерпретируется как множественное суммирование элементов (3.5). Следует отметить, что подобным образом можно записывать и четкие множества. Например, множество школьных оценок можно символически представить как

что равнозначно записи

Если - это пространство с бесконечным количеством элементов, то нечеткое множество символически записывается в виде

Пример 3.1

Допустим, что - множество натуральных чисел. Определим понятие множества натуральных чисел, «близких числу 7». Это можно сделать определением следующего нечеткого множества :

Пример 3.2

Если , где - множество действительных чисел, то множество действительных чисел, «близких числу 7», можно определить функцией принадлежности вида

Поэтому нечеткое множество действительных чисел, «близких числу 7», описывается выражением

Замечание 3.1

Нечеткие множества натуральных или действительных чисел, «близких числу 7», можно записать различными способами. Например, функцию принадлежности (3.10) можно заменить выражением

На рис. 3.1а и 3.1б представлены две функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Рис. 3.1. Иллюстрация к примеру 3.2: функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Пример 3.3

Формализуем неточное определение «подходящая температура для купания в Балтийском море». Зададим область рассуждений в виде множества . Отдыхающий I, лучше всего чувствующий себя при температуре 21°, определил бы для себя нечеткое множество

Отдыхающий II, предпочитающий температуру 20°, предложил бы другое определение этого множества:

С помощью нечетких множеств и мы формализовали неточное определение понятия «подходящая температура для купания в Балтийском море». В некоторых приложениях используются стандартные формы функций принадлежности. Конкретизируем эти функции и рассмотрим их графические интерпретации.

1. Функция принадлежности класса (рис. 3.2) определяется как

где . Функция принадлежности, относящаяся к этому классу, имеет графическое представление (рис. 3.2), напоминающее букву «», причем ее форма зависит от подбора параметров , и . В точке функция принадлежности класса принимает значение, равное 0,5.

2. Функция принадлежности класса (рис. 3.3) определяется через функцию принадлежности класса :

Рис. 3.2. Функция принадлежности класса .

Рис. 3.3. Функция принадлежности класса .

Функция принадлежности класса принимает нулевые значения для и . В точках ее значение равно 0,5.

3. Функция принадлежности класса (рис. 3.4) задается выражением

Читатель с легкостью заметит аналогию между формами функций принадлежности классов и .

4. Функция принадлежности класса (рис. 3.5) определяется в виде

Рис. 3.4. Функция принадлежности класса .

Рис. 3.5. Функция принадлежности класса .

В некоторых приложениях функция принадлежности класса может быть альтернативной по отношению к функции класса .

5. Функция принадлежности класса (рис. 3.6) определяется выражением

Пример 3.4

Рассмотрим три неточных формулировки:

1) «малая скорость автомобиля»;

2) «средняя скорость автомобиля»;

3) «большая скорость автомобиля».

В качестве области рассуждений примем диапазон , где - это максимальная скорость. На рис. 3.7 представлены нечеткие множества , и , соответствующие приведенным формулировкам. Обратим внимание, что функция принадлежности множества имеет тип , множества - тип , а множества - тип . В фиксированной точке км/час функция принадлежности нечеткого множества «малая скорость автомобиля» принимает значение 0,5, т.е. . Такое же значение принимает функция принадлежности нечеткого множества «средняя скорость автомобиля», т.е. , тогда как .

Пример 3.5

На рис. 3.8 показана функция принадлежности нечеткого множества «большие деньги». Это функция класса , причем , , .

Рис. 3.6. Функция принадлежности класса .

Рис. 3.7. Иллюстрация к примеру 3.4: функции принадлежности нечетких множеств «малая» , «средняя» , «большая» скорость автомобиля.

Рис. 3.8. Иллюстрация к примеру 3.5: Функция принадлежности нечеткого множества «большие деньги».

Следовательно, суммы, превышающие 10000 руб, можно совершенно определенно считать «большими», поскольку значения функции принадлежности при этом становятся равными 1. Суммы, меньшие чем 1000 руб, не относятся к «большим», так как соответствующие им значения функции принадлежности равны 0. Конечно, такое определение нечеткого множества «большие деньги» имеет субъективный характер. Читатель может иметь собственное представление о неоднозначном понятии «большие деньги». Это представление будет отражаться иными значениями параметров и функции класса .

Определение 3.2

Множество элементов пространства , для которых , называется носителем нечеткого множества и обозначается (support). Формальная его запись имеет вид

Определение 3.3

Высота нечеткого множества обозначается и определяется как

Пример 3.6

Определение 3.4

Нечеткое множество называется нормальным тогда и только тогда, когда . Если нечеткое множество не является нормальным, то его можно нормализовать при помощи преобразования

где - высота этого множества.

Пример 3.7

Нечеткое множество

после нормализации принимает вид

Определение 3.5

Нечеткое множество называется пустым и обозначается тогда и только тогда, когда для каждого .

Определение 3.6

Нечеткое множество содержится в нечетком множестве , что записывается как , тогда и только тогда, когда

для каждого .

Пример включения (содержания) нечеткого множества в нечетком множестве иллюстрируется на рис. 3.9. В литературе встречается также понятие степени включения нечетких множеств. Степень включения нечеткого множества в нечеткое множество на рис. 3.9 равна 1 (полное включение). Нечеткие множества, представленные на рис. 3.10, не удовлетворяют зависимости (3.27), следовательно, включение в смысле определения (3.6) отсутствует. Однако нечеткое множество содержится в нечетком множестве в степени

Выполняется условие

Рис. 3.12. Нечеткое выпуклое множество.

Рис. 3.13. Нечеткое вогнутое множество.

Рис. 3.13 иллюстрирует нечеткое вогнутое множество. Легко проверить, что нечеткое множество является выпуклым (вогнутым) тогда и только тогда, когда являются выпуклыми (вогнутыми) все его -разрезы.

Современную науку и технику невозможно представить без широкого применения математического моделирования, поскольку далеко не всегда могут быть поставлены натурные эксперименты, зачастую они слишком дороги и требуют значительного времени, во многих случаях они связаны с риском и большими материальными или моральными издержками. Сущность математического моделирования состоит в замене реального объекта его «образом» – математической моделью – и дальнейшим изучением модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Важнейшим требованием, предъявляемым к математической модели, является условие ее адекватность (правильного соответствия) изучаемому реальному объекту относительно выбранной системы его свойств. Под этим, прежде всего, понимается правильное количественное описание рассматриваемых свойств объекта. Построение таких количественных моделей возможно для простых систем.

Иначе дело обстоит со сложными системами. Для получения существенных выводов о поведении сложных систем необходимо отказаться от высокой точности и строгости при построении модели и привлекать при ее построении подходы, которые являются приближенными по своей природе. Один из таких подходов связан с введением лингвистических переменных, описывающих нечеткое отражение человеком окружающего мира. Для того чтобы лингвистическая переменная стала полноправным математическим объектом, было введено понятие нечеткого множества.

В теории четких множеств была рассмотрена характеристическая функция четкого множества в универсальном пространстве , равная 1, если элемент удовлетворяет свойству и, следовательно, принадлежит множеству , и равная 0 в противном случае. Таким образом, речь шла о четком мире (булевой алгебре), в котором наличие или отсутствие заданного свойства определяется значениями 0 или 1 («нет» или «да»).

Однако в мире нельзя все разделить только на белое и черное, истину и лож. Так, еще Будда видел мир, заполненный противоречиями, вещи могли быть истинны в некоторой степени и, в некоторой степени, ложны в то же самое время. Платон положил основу того, что станет нечеткой логикой, указывая, что имелась третья область (вне Истины и Лжи) где эти противоречия относительны.

Профессор Калифорнийского университета Заде опубликовал в 1965 статью «Нечеткие множества», в которой он расширил двузначную оценку 0 или 1 до неограниченной многозначной оценки выше 0 и ниже 1 в замкнутом интервале и впервые ввел понятие «нечеткого множества». Вместо термина «характеристическая функция» Заде использовал термин «функция принадлежности». Нечеткое множество (оставлено то же обозначение, что и для четкого множества) в универсальном пространстве
через функцию принадлежности (то же обозначение, что и для характеристической функции) определяется следующим образом

Функция принадлежности чаще всего интерпретируется следующим образом: величина означает субъективную оценку степени принадлежности элемента нечеткому множеству , например, означает, что на 80% принадлежит . Следовательно, должны существовать «моя функция принадлежности», «твоя функция принадлежности», «функция принадлежности специалиста» и т. п. Графическое представление нечеткого множества диаграмма Венна представляет собой концентрические окружности рис. 1. Функция принадлежности нечеткого множества имеет колоколообразный график в отличие от прямоугольного характеристической функции четкого множества рис. 1.

Следует обратить внимание на связь четкого и нечеткого множеств. Два значения {0,1} характеристической функции принадлежат замкнутому интервалу значений функции принадлежности. Следовательно, четкое множество является частным случаем нечеткого множества, а понятие нечеткого множества является расширенным понятием, охватывающим и понятие четкого множества. Другими словами четкое множество является и нечетким множеством.

Нечеткое множество строго определяется с помощью функции принадлежности и не содержит какой-либо нечеткости. Дело в том, что нечеткое множество строго определяется с помощью оценочных значений замкнутого интервала , а это и есть функция принадлежности. В случае если универсальное множество состоит из дискретного конечного набора элементов, то исходя из практических соображений, указывают значение функции принадлежности и соответствующий элемент, используя знаки разделения / и +. Например, пусть универсальное множество состоит из целых чисел меньших 10, тогда нечеткое множество «малые числа» можно представить в виде

A=1/0 + 1/1 + 0,8/2 + 0,5/3 + 0,1/4

Здесь, например, 0,8/2 означает . Знак + обозначает объединение. При написании нечеткого множества в приведенном выше виде опускаются элементы универсального множества со значениями функции принадлежности, равными нулю. Обычно записывают все элементы универсального множества с соответствующими значениями функции принадлежности. Используется запись нечеткого множества, как в теории вероятностей,

Определение. В общем случае нечеткое подмножество универсального множества определяется как множество упорядоченных пар

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то