Этапы запуска гту. Способ пуска газотурбинной установки Система запуска газотурбинных установок

Топливная система. Топливом для судовых ГТУ служат мазут, дизельное топливо и керосин. В период запуска и остановки ис­пользуется легкое, менее вязкое топливо, устраняющее засорение фильтров и закоксовывание форсунок. Для улучшения процесса сжигания тяжелых сортов топлива (мазута) и устранения образо­вания отложений в газовом тракте турбины к топливу добавляют специальные присадки.

На рис. 118 показана принципиальная схема топливной си­стемы газотурбинной установки. В период запуска пусковой элек­тронасос 17 подает пусковое топливо из цистерны 1 через фильтр грубой очистки 18 к пусковой форсунке 14. По достижении устой­чивого горения пусковой форсунки в работу включается главный топливный насос 8 при закрытом кране 6 и открытом кране 9. Главный топливный насос направляет пусковое топливо к топлив­ному агрегату 10 рабочих форсунок 13. Перед поступлением к фор­сункам топливо проходит сетчатый фильтр 11 и стоп-кран 12. Топливоперекачивающий насос 16 подает пусковое топливо через тиливоподогреватель 15 и сетчатый фильтр 7 к главному топлив­ному насосу.

Одновременно в системе основного топлива идет подогрев мазута до требуемой температуры (порядка 393° К) для уменьшения его вязкости; при этом работает рециркуляционный контур основ­ного топлива: мазут из расходной цистерны 2 , пройдя щелевые фильтры 3 грубой очистки, подкачивающим насосом 4 через по­догреватель 5 и кран 6 возвращается обратно в расходную ци­стерну. Когда мазут достигнет требуемой температуры, кран 6 переводится в положение подвода мазута к рабочим форсун­кам 13, а кран 9 перекрывается, и пусковое топливо перекачива­ется обратно в запасную цистерну 1 .

Масляная система. Масляная система судовых ГТУ, как и па­ротурбинных, может быть циркуляционной или гравитационной напорной. К смазочным маслам судовых ГТУ предъявляются бо­лее повышенные требования, чем к маслам паротурбинных уста­новок. Масла не только должны обладать высокими смазочными, противоизносными и противокоррозионными свойствами, но также быть устойчивыми к образованию отложений, иметь высокую температуру вспышки, не ниже 473° К, так как у некоторых ГТУ температура подшипников достигает 423-443° К.

Система охлаждения. Система охлаждения газовых турбин может быть водяной и воздушной.

На рис. 119 показана принципи­альная схема воздушно-водяного охлаждения ГТУ судна «Париж­ская коммуна». Корпус турбины высокого давления 2 охлажда­ется дистиллированной водой, подаваемой центробежным насо­сом 5 через спаренный фильтр 6. После охлаждения корпуса ТВД дистиллированная вода через поверхностный водоохладитель 7 воз­вращается в цистерну 4. Охлаждение дисков турбины низкого дав­ления 1 производится воздухом, который отбирается из промежу­точной ступени компрессора 3 , а охлаждение диска турбины вы­сокого давления 2 - воздухом, отбираемым из последней ступени компрессора.

Реверсивные устройства ГТУ. Реверс в ГТУ может быть осу­ществлен с помощью ТЗХ, винтов регулируемого шага (ВРШ), гидрореверсивных устройств, электропередач и реверсивно-планетарных передач. Однако в трубокомпрессорных ГТУ в связи со значительным конечным давлением газа (около 1 бара), а следо­вательно ростом потерь мощности на вращение турбин обратного хода и сложностью конструкций переключающего устройства ТЗХ не нашла широкого применения. В ГТУ с СПГГ объемный расход газа и его температура перед турбиной значительно меньше, чем в турбокомпрессорных ГТУ, и это уменьшает размеры переклю­чающих органов. Для осуществления реверса в ГТУ с СПГГ при­меняют ТЗХ.

Применение ВРШ повышает маневренность судна, упрощает ГТУ и улучшает ее работу на нерасчетных режимах.

Гидрореверсивные устройства и реверсивно-планетарные пере­дачи обладают компактностью, малым весом и хорошими манев­ренными характеристиками. Этот тип реверсивных устройств для установок большой мощности находится в стадии освоения.

Электропередача, обладая хорошими маневренными качест­вами, имеет значительные (для судов) весо-габаритные показатели и невысокий к. п. д.

Система управления и защиты . Эта система предназначена: для управления газотурбинной установкой при запуске, маневрах и остановке; для предупреждения аварийных состояний установки и ее защиты при превышении предельной частоты вращения или осевого сдвига роторов установки, падении давления масла и пресной воды в системах смазки и охлаждения ниже допустимых, изменениях рабочей температуры газового потока (повышение температуры, срыв факела в камере сгорания).

Управление ГТУ при запуске осуществляется путем последо­вательного включения и выключения пусковых устройств, а на рабочих режимах изменением подачи топлива в камеру сгорания, открытием клапанов перепуска газа в выпускной газоход и откры­тием заслонок противопомпажного устройства компрессора. Управ­ление всеми этими операциями осуществляется дистанционно с пульта управления или с мостика. При выходе из строя автома­тического дистанционного управления предусматривается ручное управление. Система защиты снабжается аварийно-предупреди­тельной и информационной сигнализацией, при срабатывании ко­торой зажигаются лампочки и включается звуковой сигнал.

На рис. 120 показана упрощенная схема управления ГТУ с ВРШ. К форсункам камеры сгорания 2 очищенное тяжелое топливо подается топливным насосом 12 через главный регулирую­щий орган 9, который определяет режим работы установки. Пе­ремещение регулирующего органа 9 осуществляется с поста управления поворотом маховика 5 через кулачок 6 и пружину 4. Постоянный перепад давления масла на регулирующем органе под­держивается регулятором 3, а скорость его перемещения ограни­чивается регулятором приемистости 11. Подвод пускового дизель­ного топлива осуществляется регулятором подачи 10. Сервомо­тор 1 и золотник 13 обеспечивают перекладку лопастей ВРШ. Угол поворота лопастей винта задают поворотом маховика 5 через сельсин-датчик 7 и сельсип-приемпик 14, которые связаны элек­трически в следящую систему. Аварийный поворот лопастей ВРШ производят ручным приводом 8.

Рис 3.1. (1 - момент стартера М ст; 2 - момент турбины М т; 3 –суммарный момент стартера и турбины М ст + М т; 4 - общий момент сопротивления ТК блока М ст + М т; I,II,III - этапы запуска).

На первом этапе происходит раскрутка ТК блока с помощью стартера до частоты вращения n 1 , соответствующей началу пос­тупления в камеру сгорания воздуха и осуществлению процесса вос­пламенения в ней.

На втором этапе (от n 1 до n 2) продолжается раскрутка ТК блока, но уже при совместной работе стартера и турбины. После достижения ТК частоты вращения n 2 , когда мощность турбины становится достаточной для его дальнейшей раскрутки, стартер отключается.

На последнем этапе (от n 2 до n xx) продолжается увеличение мощности турбины и выход ГТУ на режим холостого хода.

Рассмотрим процессы, происходящие в элементах ГТУ, в период ее пуска от n= 0, до n=n xx .

Потребная для работы компрессора мощность определяется его параметрами: КПД (η к), производительностью (G к) и величи­ной перепада тепла, характеризующего достигнутую степень повыше­ния давления при определенной температуре наружного воздуха. Ха­рактер изменения некоторых из них от частоты вращения в период пуска ГТУ представлен на рис.3.2.

Характер изменения параметров работы компрессора при запуске ГТУ

Рис.3.2. (1 - степень повышения давления π к; 2 - произ­водительность G к; 3 - потребляемая мощность N e k ; I - начало горения топлива; II - отключение стартера; III - частота вращения холостого хода).

Мощность, развиваемая турбиной ТК блока, также определяется параметрами: температурой газов на входе, их степенью расширения и расходом. Характер изменения некоторых из них в зависимости от частоты вращения при запуске корабельной ГТУ представлен на рис.3.3.

Характер изменения параметров работы турбины при запуске корабельной ГТУ

Рис.3.3. (1 - температура газов перед турбиной Т 3 ; 2 - степень расширения газа е ; 3 – мощность турбины N е T ; I - начало горения топлива; II - отключение стартера; III - частота вращения холостого хода).

Характер изменения параметров работы ГТУ-20 транспортного судна при ее запуске приведен на рис.3.4 .

Осциллограмма запуска ГТУ-20

Рис.3.4 (1 - число оборотов ТКВД n 1 ; 2 - температура газа перед ТВД T 1 ; 3 - число оборотов ТКНД n 2 ; 4 - давление топлива перед форсунками Р T ; _____ из холодного состояния; _ _ _ _ _ из прогретого состояния; I - включение зажигания и подача топлива; II - отклю­чение зажигания; III - страгивание ТКНД; IV – отключение стартера).

В общем случае процесс запуска ГТУ можно разбить на следующие этапы: страгивание, холодный разгон и подача топлива.



Для страгивания ТК блока к нему с помощью стартера подводится энергия, обеспечивающая преодоление сопротивления всей системы и ускорение ротора. При этом крутящий момент стартера должен быть не менее, чем в 1,5-2,0 раза больше момента страгивания, определяемого по формуле:

М стр =ξ*Р*r, (3.1)

где Р - вес ротора ТК; r - радиус подшипника, ξ = 0,3 - коэф­фициент трения покоя.

Величина указанного запаса обуславливается изменением момен­та страгивания в зависимости от времени стоянок, количества вскрытий, ремонтов и др.

На этапе холодного разгона необходимо принимать во внимание следующее обстоятельство: момент сопротивления ТК до подачи топ­лива в камеру сгорания для ГТД различ­ного класса может быть принят, равным моменту сопротивления компрессора, т.к. момент сопротивления турбины в это период пренеб­режимо мал. Для определения момента сопротивления ТК при В = 0, т.е. в области небольшого сжатия воздуха, может быть использована формула:

М/М 0 ≈ (n/n 0) 2 , (3.2)

где М 0 , n 0 - момент и частота вращения ТК на основном расчетном режиме.

При подаче топлива необходимо руководствоваться следующим. Продолжительность запуска ГТУ определяется временем подачи топлива и чем раньше оно будет подано, тем меньше время запуска. При экстренном запуске вводится ряд ограничений. Для обеспечения устойчивого горения в камере сгорания минимальное число оборотов компрессора должно составлять 10-20 % от значения полного хода. Удовлетвори­тельный распыл топлива должен быть обеспечен при его минимальном расходе через форсунки. Применительно к форсункам с механическим распылом эта величина обычно составляет 10-20 % от расхода на полном ходу, а с воздушным распылом она может быть снижена до 5-10 %. При выборе числа оборотов и количества топлива в момент подачи необходимо учитывать, что из-за неудовлетворительного рас­пыла, низкой скорости и температуры воздуха его значительная часть может не сгореть вообще или будет догорать в проточной части тур­бин. Поэтому КПД камеры сгорания в этот период падает до 60-70 % (вместо 97-98 % на полном ходу).



Приведенные цифры являются ориентировочными, т.к. рабочий процесс камер сгорания в пусковом режиме существенно зависит от типа камеры, форсунок и системы подачи топлива и в отдельных слу­чаях может выходить за указанные пределы. Исходя из условий надеж­ности запуска, число оборотов и расход топлива в момент его подачи должны быть не менее 20 % от их значений на режиме полного ПХ. В условиях нормальной эксплуатации указанные ограничения отсут­ствуют. Например, в ГТУ-20 топливо подается после выхода ТК на холодный установившийся режим.

Для осуществления пуска судовых ГТУ находят применение три вида стартера (электродвигатели постоянного и переменного тока, паровая турбина), каждому из которых присущи свои особен­ности. Так, электродвигатель постоянного тока обладает хорошей моментной характеристикой, допускает регулирование режима прос­тейшими способами (например, изменением напряжения в обмотке возбуждения), однако имеет большие габариты и для своей работы требует наличие выпрямителя.

Электродвигатель переменного тока обладает теоретически
наилучшей моментной характеристикой ( ст = f(n)). В то же время обычные малогабаритные двигатели (с короткозамкнутым ротором) допускают работу при пониженной скорости вращения только в течение нескольких секунд из-за многократной перегрузки по току, что для запуска ГТД неприемлемо, т.к. раскрутка ТК из-за его инер­ции обычно занимает несколько минут. Применение регулируемых двигателей (например, с фазным ротором) нерационально из-за увели­ченных габаритов и сложности системы регулирования. Поэтому для запуска ГТУ наиболее целесообразным является электродвигатель переменного тока в сочетании с гидротрансформатором. Такой комп­лекс представляет собой электрогидравлическое пусковое устройство. Наилучшей пусковой характеристикой обладает паровая турбина, т.к. она развивает большую мощность при предельно малых габаритах. Ее применение ограничивается необходимостью наличия пара, а это ставит запуск ГТД в зависимость от работы паровых котлов.

Мощность стартера составляет 2-4 % от мощности ГТД.

При выборе времени запуска определяющим является вес ГТД. Например, в легких ГТД, благодаря малой массе деталей, не возни­кает опасность недопустимых температурных напряжений, кораблений и т.п., связанных с его быстрым нагревом при запуске. В этом случае запуск определяется временем разгона ротора. В тяжелых ГТД, наоборот, вследствие массивности их деталей необходим постепенный и длительный прогрев. Время выхода из холодного неподвиж­ного состояния на режим холостого хода в большинстве случаев составляет 10 мин, а на режим полного хода - (20-30) мин; из горячего состояния - соответственно (4-6) мин и (6-8) мин. Экстренный запуск в 3-4 раза быстрее нормального запуска ГТД.

Учитывая, что надежность запуска ГТД в действие определяется моментом сопротивления раскручиваемого ТК, поэтому при его работе в таком режиме необходимо создать условия для уменьшения величины сопротивления и увеличения вращающего момента. В зависимости от типа ГТД для этих целей используют различные способы. В ГТД прос­тейшей схемы для улучшения пусковой характеристики уменьшают нагрузку на выходном валу, например, путем постановки на нулевой шаг лопасти ВРШ, отсоединения ГТД от гребного винта и т.п. В ГТД со свободной пропульсивной турбиной уменьшают сопротивление за турбиной компрессора, например, путем вытравливания газа на ее входе или раскрытием сечения поворотом сопловых аппаратов.

Для ГТД с двумя компрессорами имеются свои особенности. В начальный период запуска ТКНД неподвижен, т.к. момента, разви­ваемого его турбиной, не хватает для страгивания. В этот период помимо потери на выхлопе турбины раскручиваемого ТК (как и в схе­ме со свободной турбиной), добавляется потеря от прососа воздуха через неподвижный КНД, которая по опытным данным равна:

ΔР пр = кz(G/G 0) 2 , (3.3)

где z - число ступеней компрессора; G - количество просасывае­мого воздуха; G 0 - номинальная производительность компрессора; к≈1.

Из формулы (3.3) видно, что даже при малых расходах воздуха

компрессор представляет собой существенное сопротивление, сле­довательно, для улучшения пусковой характеристики ГТД следует либо с помощью специального пускового устройства заранее страги­вать ТКНД, либо уменьшать потери путем введения дополнительного воздушного тракта в обвод КНД.

Наиболее распространенной причиной повышения момента сопротивления при запуске является помпаж компрессора, приводящий к резкому снижению его КПД. В этом случае рациональным способом улучшения пусковой характеристики является вытравливание в атмос­феру небольшого количества воздуха из компрессора. Возникающие при этом потери будут значительно меньше по сравнению с выигры­шем от увеличения КПД компрессора в процессе его выхода из помпажа. Например, в ГТУ-20 компрессор при работе во время запуска в зоне помпажа имеет КПД около 65 %, а при выходе из помпажа - около 85 %, т.е. КПД увеличивается более чем на 20 %. Количест­во же воздуха, вытравливаемое для выхода из помпажа, составляет менее 10 %.

На запуск ГТД оказывает влияние его тепловое состояние. Нап­ример, запустить ГТД из прогретого состояния легче, чем из холод­ного. Это связано с уменьшением радиальных зазоров турбин и комп­рессоров, и соответствующим увеличением их КПД.

Как указывалось выше, при запуске ГТУ в действие в ее основных элементах происходят специфические процессы. Их сущность излага­ется ниже.

КАМЕРА СГОРАНИЯ. В этом элементе в конце первого этапа запуска при достижении ТК блоком частоты вращения n 1 (рис.3.1) происходит зажигание топлива. Для обеспечения ее надежного нача­ла и устойчивой последующей работы необходимы эффективные дейст­вия воспламеняющего устройства, хорошее смесеобразование и ор­ганизация горения.

В качестве воспламеняющих устройств наибольшее распростране­ние получили пусковые воспламенители , состоящие из пусковых фор­сунок и устройств, обеспечивающих необходимое формирование огне­вого факела. Их пусковые качества в основном обусловлены расходом топлива. В камерах сгорания, имеющих пусковые воспламенители, по­дается в 1,5 раза больше топлива, чем без них.

Устойчивость работы пускового воспламенителя определяется скоростью воздушного потока на входе в диффузор камеры сгорания и коэффициентом избытка воздуха в нем, а эффективность работы - температурой, глубиной проникновения факела внутрь жаровой трубы и местом расположения. Значения этих параметров взаимосвя­заны с составом смеси в воспламенителе и совершенством рабочего процесса.

После поджигания топливо-воздушной смеси происходит расп­ространение пламени по всему объему жаровой трубы камеры сгорания. Факторами, определяющими его характер, являются отношение количест­ва тепла, выделившегося в начальном сферическом объеме смеси, где происходит электрический разряд, к количеству отводимого тепла. Зависимость здесь такова: чем больше это отношение, тем лучше происходит распространение пламени.

В последующий период горения начинает возрастать давление в камере сгорания, в результате чего происходит переброс пламени через специальные патрубки в остальные холодные ее объемы и под­жигание в них топливо-воздушной смеси.

Надежность распространения пламени по всему объему камеры сгорания зависит от геометрических размеров и кинетической энер­гии выходящего факела, определяющих его воспламеняющую способ­ность, а также от характеристик смеси в циркуляционных зонах хо­лодных жаровых труб.

Геометрические размеры поджигающего факела при постоянном перепаде давлений между жаровыми трубами обусловлены только вели­чиной проходного сечения пламеперебрасывающего патрубка.

Устойчивое воспламенение смеси в камере сгорания возможно лишь при проникновении огневого факела в зону обратных токов цир­куляционной области. Если этого не произойдет и топливовоздушная смесь будет поджигаться на периферии жаровой трубы, стабильного горения смеси во всем объеме жаровой трубы не образуется, т.к. пламя постоянно будет сноситься потоком, движущимся с большой скоростью в зоне прямых токов.

Условия воспламенения смеси и пламеобразование во всем объе­ме жаровой трубы непосредственно зависят от состава горючей смеси и качества ее образования. Горение происходит при вполне опреде­ленных соотношениях паров топлива и воздуха.

Время подготовки смеси связано со скоростью испарения топ­лива. Оно определяет возможности сгорания смеси в пределах жаро­вой трубы. Интенсивность испарения топлива непосредственно зави­сит от степени его распыла (величины капелек) и усиливается с уменьшением их размеров.

При попадании огневого факела в зону обратных токов происхо­дит интенсивное испарение капель топлива и его воспламенение с распространением процесса воспламенения и на зону прямых токов. Устанавливается стабильный процесс горения, при котором горение смеси в зоне прямых токов постоянно поддерживается очагом пламени в зоне обратных токов. После этого отключаются пусковые воспла­менители.

Пусковые возможности камеры сгорания характеризуются ее пус­ковой характеристикой. Она определяет область воспламенения и ее границы, а также максимально допустимые значения скорости потока и коэффициента избытка воздуха.

КОМПРЕССОР. Для ускорения вывода ГТУ на режим холостого хода необходимо иметь температуру газа перед турбиной максимально до­пустимой. Однако препятствием этому является предел устойчивой работы компрессора.

Известно, что область такой работы осевого компрессора при низкой частоте вращения существенно сужена. Кроме того, при ин­тенсивном возрастании температуры газов перед турбиной заметно увеличивается сопротивление газовоздушного тракта ТК и, как след­ствие, снижается производительность компрессора. Его степень по­вышения давления в области малых оборотов возрастает медленно. В конечном итоге происходит уменьшение осевой скорости воздушно­го потока, увеличение угла атаки обтекания лопаток и возможен срыв потока. Компрессор будет работать неустойчиво (помпажировать) , в результате чего начнется колебание давления воздуха на выходе, снизится его производительность и возникнет вибрация. Все это отразится на работе турбины. При падении давления за компрессором нарушится установившаяся работа камеры сгорания и догорание газов будет происходить уже за турбиной. При сниженном давлении на входе и возросшем противодавлении на выходе существенно уменьшит­ся тепловой перепад, срабатываемый турбиной и, как следствие, про­изойдет снижение интенсивности роста частоты вращения ТК блока. В таких условиях возможны "зависание" частоты вращения и срыв запуска ГТУ. Во избежание этого, величина критерия устойчивости компрессора против помпажа должна быть К у >1,1. При значениях К у > 1,1 (очень малых запасах устойчивости) требуется корректи­ровка подачи топлива на запуске вручную.

Характеристика компрессора при работе его на пусковых режи­мах приведена на рис.3.5 .

Видно, что при запуске рабочая линия компрессора заметно смещается в сторону к границе устойчивости по сравнению с рабо­той на установившихся режимах.

На некоторых ГТУ допускается выход рабочей линии компрессора за границу устойчивой работы на первом этапе запуска, т.к. в этот период топливо в камеру сгорания не подается, а поэтому серьезной опасности ГТУ не подвергается. В противном случае (по каким-то причинам произойдет подача топлива в камеру сгорания) ГТУ попадет в помпаж и возможен пожог лопаток турбины.

Пуск ГТУ - ответственная операция, которую надо проводить, соблюдая правила технической эксплуатации и безопасности

Перед пуском ГТУ следует убедиться в исправности ее основ­ного и вспомогательного оборудования, систем регулирования и защиты. Кроме того, необходимо удостовериться, что монтажные, ремонтные работы и техническое обслуживание закончены, посто­ронние лица около ГТУ и внутри нее отсутствуют. Предваритель­но должно быть проверено качество топлива и масла. Если оно не удовлетворяет установленным нормам, пуск ГТУ запрещается. Нельзя запускать ГТУ, если неисправна или отключена какая-либо защита или система регулирования, неисправен один из маслонасосов или не работает система их автоматического включения при недопустимом уменьшении давления масла в системе смазки. Пуск ГТУ проводится автоматически. Действиями обслужива­ющего персонала руководит начальник смены. После капитально-.fo или текущего ремонта пуск ГТУ ведется под руководством начальника цеха или его заместителя. Собственно пуск ГТУ мож­но разделить на несколько этапов (рис. 145).

На нервом этапе ротор газотурбинной установки раскручивают пусковым двигателем, так как она не может запуститься само­стоятельно. Мощность пускового ус­тройства составляет 1-6% от мощности ГТУ. Этому этапу соответст­вует участок 1 - 2. При частоте вращения 20-35% от номинальной количества воздуха, подаваемого компрессором, достаточно для ус­тойчивого горения топлива в камере сгорания.

Затем в камеру сгорания пода­ется и зажигается топливо, и прак­тически мгновенно температура и давление в ней резко возрастают (точка 3). Расход рабочего газа при этом немного уменьшается. Часто­та вращения ротора за это время практически не успевает изменить­ся и можно считать, что участок 2 -3 соответствует постоянной ча­стоте вращения. При зажигании топлива система регулирова­ния должна обеспечить такое его количество, чтобы компрессор не попал в помпаж (точка 3 находится правее границы помпажа- -пунктирная линия).

Следующий этап - увеличение частоты вращения ротора. Рас­кручивать ротор нужно по возможности быстрее, не допуская опять-таки помпажа. Система регулирования должна обеспечи­вать такой режим раскрутки, при котором гарантируется неко-

Рис. 145. Характерные этапы пуска ГТУ:

1 - запуск пускового двигателя, 2 - зажигание топлива в камере сгора-вия, 3 - выход на режим работы вблизи границы помпажа, 4 - вы­ход на режим работы с предельной температурой газа перед турбиной, б - работа при постоянном расходе топлива, равном расходу на холос­том ходу, 6 - работа на холостом ходу

торый запас по отношению к границе помпажа (участок 3-4). При пониженных частотах с этой целью через антипомпажный клапан может сбрасываться до 30% воздуха, проходящего через компрессор.

При определенной частоте вращения турбина начинает выра­батывать такую мощность, что далее может вращать ротор ГТУ самостоятельно. Такой режим называют режимом самоходности (расход G c и степень сжатия е с). Пусковое устройство при; этом отключается.

Вследствие сжигания в камере сгорания все большего количе­ства топлива увеличивается частота вращения ротора и растет температура газа перед турбиной, которая, наконец, достигает пре­дельного значения (точка 4). Так как больше увеличивать темпе­ратуру газа нельзя, система регулирования автоматически ограничивает увеличение расхода топлива, но он продолжает расти, так как нужно увеличивать частоту вращения ротора и, следовательно, вырабатываемую турбиной мощность. Однако система регулирова­ния подает столько топлива, чтобы температура рабочего газа пе­ред турбиной сохранялась постоянной (участок 4 -5).

Наконец, расход топлива становится таким, каким он должен* быть на холостом ходу (точка 5). Для плавного выхода на холос­той ход без резкого увеличения частоты вращения (заброса) си­стема регулирования сохраняет расход топлива постоянным (учас­ток 5 -6) до тех пор, пока частота вращения ротора не станет равной его частоте вращения на холостом ходу.

После того как ГТУ начнет устойчиво работать на" холостом ходу, ее можно нагружать, увеличивая расход топлива. Если по­требителем мощности является электрический генератор, его сле­дует предварительно включить в сеть. Для этого надо так плавно регулировать частоту вращения ротора ГТУ, чтобы совпали не только частоты эдс на шинах электрического генератора и сети, но и их фазы. Эта процедура называется синхронизацией генера­тора. В момент совпадения частоты и фазы генератор подключа­ется к сети.

Если не провести синхронизацию, то в момент включения гене­ратора в сеть возникает толчок, поворачивающий ротор генера­тора по окружности настолько, чтобы фазы тока сети и эдс гене­ратора совпали.

Если в результате отказа при зажигании топлива в камере сго­рания или по другим причинам пуск ГТУ не состоялся, нельзя без вентиляции трактов подавать, топливо в камеру сгорания и под­жигать его. Это необходимо, чтобы удалить топливо, оставшееся в тракте после неудачного пуска. В ином случае возможно взрывообразное возгорание этого топлива (хлопок).

При нарушении установленной последовательности пусковых операций пуск ГТУ прекращается персоналом или защитами, ко­торые срабатывают при повышении температуры газа выше пре­дельной, недопустимом увеличении нагрузки пускового устройства или снижении частоты вращения ротора после отключения пускового устройства, помпаже и в других случаях, предусмотренных местными инструкциями. Кроме того, персонал должен отключить ГТУ при появлении стуков, скрежета и недопустимом увеличении вибрации.

неисправности или отключения какойлибо из защит;
наличия дефектов системы регулирования, которые могут привести к превышению допустимой температуры газов или разгону турбины;
неисправности одного из масляных насосов или системы их автоматического включения;
отклонения от норм качества топлива или масла, а также при температуре или давлении топлива (масла) ниже или выше установленных пределов;
отклонения контрольных показателей теплового или механического состояния ГТУ от допустимого.
Не допускается пуск ГТУ после аварийного останова или сбоя при предыдущем пуске, если причины этих отказов не устранены.
Нельзя пускать и эксплуатировать ГТУ, если неисправны системы, обеспечивающие их жизнеспособность и надежность.
Предупреждение или предотвращение дальнейшего развития аварии при повреждениях отдельных узлов или недопустимых отклонениях параметров работы от нормы осуществляются системой автоматических защит. Важнейшими из них являются защиты от недопустимого повышения частоты вращения, температуры газов перед и за турбинами, от погасания факела и понижения давления смазочного масла. Кроме них обычно имеются защиты от осевого сдвига роторов, недопустимого понижения давления воздуха за компрессором (в случае, например, помпажа), недопустимого понижения давления топлива и др. Очень важным показателем механического состояния ГТУ является уровень вибрации.
Отклонения от нормальной работы фиксируются датчиками систем защиты. Сигналы датчиков по электрическим и (или) гидравлическим каналам передаются на исполнительные органы, срабатывание которых вызывает остановку ГТУ.
Если изменение параметров, по которым работают защиты, происходит медленно, предусматривается обычно предварительная уставка. При ее достижении подается предупредительный сигнал или автоматически осуществляются операции (уменьшение расхода топлива, включение резервного насоса и т.п.), препятствующие нежелательному изменению режима.
Отключение автоматических защит перед пуском или при работе ГТУ недопустимо. Тем более недопустимо отключение защит в тех случаях, когда по показаниям связанных с ними приборов персонал видит, что параметр, по которому производится защита ГТУ, приближается к своему предельно допустимому значению.
Повышение температуры в случаях, например, нарушения устойчивой работы компрессоров происходит столь быстро, что даже тренированный персонал не успевает своевременно остановить ГТУ вручную. Продолжительная (в течение минут) работа ГТУ в режиме помпажа также недопустима, даже если при этом не происходит полного срыва потока, а колебания давления относительно невелики. Возникающие при этом большие знакопеременные нагрузки на лопатках могут резко снижать сроки их службы и даже вызывать (сразу или через некоторое время) поломки. При этом ускоряется также износ упорных подшипников.
Превышение допустимой температуры газов или частоты вращения может привести к наиболее тяжелым повреждениям ГТУ. Опыт эксплуатации ГТУ свидетельствует о необходимости двойной защиты по этим параметрам, одна из которых осуществляется через систему регулирования.
Неисправности системы регулирования могут быть обнаружены непосредственно (заедания или неплотности клапанов, изменения по сравнению с нормальными характерных электрических величин или давления масла и т.д.), а также при работе ГТУ по: изменению пусковых характеристик (времени пуска, связи хода механизма управления с частотой вращения, уровню температуры газов на разных этапах); появлению неустойчивости; колебаниям нагрузки и температуры газов на постоянных режимах и после их изменения; резким колебаниям нагрузки и температуры газов при пусках, нагружении и разгружении.
Обеспечение исправности подшипников и их нормальной смазки является важнейшим условием надежной работы ГТУ. В тех установках, в которых масляные насосы системы смазки расположены отдельно и приводятся во вращение электродвигателями, надежность маслоснабжения подшипников обеспечивается дублированием насосов и наличием системы автоматического включения резервного насоса при отказе основного. Каждый из насосов работает поочередно (например, в течение месяца), а перевод маслоснабжения с одного насоса на другой производится с проверкой АВР. Неисправность одного из масляных насосов или системы АВР создает опасность аварии ГТУ с выплавлением подшипников.
Для обеспечения надежной и экономичной работы ГТУ и требуемых сроков службы их деталей предъявляются определенные требования к топливу. Отклонения от этих требований могут привести к снижению надежности пусков ГТУ (забиванию форсунок и фильтров), ускоренному износу и снижению надежности самого агрегата и его систем (топливоподачи и топливораспределения, форсунок, пламенных труб камер сгорания, лопаточного аппарата турбин и теплообменных аппаратов). Особенно опасны попадание в газотурбинное жидкое топливо остатков мазута при транспортировке и хранении и наличие газового конденсата в газообразном топливе, поступающем к ГТУ.
Повышение температуры жидкого топлива ограничивается по соображениям пожарной безопасности; в нормальных условиях она должна быть на несколько градусов ниже температуры вспышки. Недопустимое понижение температуры топлива и повышение вследствие этого его вязкости могут создать трудности при прокачке, фильтрации и распиливании. В результате возможны забивание филвтров и форсунок, ухудшение процесса горения, ускоренный износ или повреждение элементов камер сгорания и турбины.
Понижение давления топлива перед ГТУ вызывает нарушение регулировки топливораспределения (установленной и необходимой для нормальной работы агрегата связи расходов топлива с положениями органов регулирования и топливораспределения). Пуск агрегата в этих условиях может сопровождаться
недопустимыми отклонениями параметров и закончиться повреждениями ГТУ.
Системы распределения жидкого топлива работают обычно при больших перепадах давлений, поэтому попадание воздуха или продуктов сгорания в топливный тракт практически исключено. При работе на газообразном топливе перепады давлений в газовых насадках горелочных устройств сравнительно невелики. Понижение давления топливного газа может привести к срыву факела в камерах сгорания, попаданию в топливопроводы воздуха или продуктов сгорания и образованию в них взрывоопасных смесей. Чрезмерное повышение давления топлива может привести к нарушению плотности соединений на топливопроводах, течам топлива и создает опасности пожара и взрыва.
Нормы на турбинное масло приведены в главе 5.14 ПТЭ. Свежее и хорошо очищенное масло плохо смешивается с водой. При плохом качестве масла находящиеся в нем капельки воды не успевают отделиться и почти не оседают в маслобаке работающей турбины. Наличие в масле механических примесей (окалины, песка, золы, пыли и частиц металла от изнашиваемых деталей) вызывает ухудшение его смазывающих качеств. Ухудшение качества масла вызывается также окислением, которое происходит при воздействии на него кислорода воздуха или воды, и значительно ускоряется с повышением температуры масла, При температуре до 60°С скорость окисления находится еще в допустимых пределах, но при дальнейшем повышении температуры на каждые 10°С она возрастает в 2 раза. Вследствие окисления понижается температура вспышки и увеличиваются вязкость масла и содержание в нем смолистых веществ. При перегреве масла более легкие фракции улетучиваются. Окисление сопровождается потемнением и помутнением масла, оно приобретает специфический запах горелого нефтяного масла, которого нормальное турбинное масло не должно иметь. Окисленное масло обладает худшими смазывающими свойствами и способствует коррозии металлических поверхностей.
Наличие в масле механических примесей и воды приводит к ускоренному износу подшипников и шеек роторов и может привести к повышению вибрации валопровода и повреждению ГТУ. От температуры масла, поступающего к подшипникам, зависят его смазывающие свойства, а с учетом неизбежного нагрева в подшипниках – также и стабильность при длительной эксплуатации. При пониженной температуре масла изза высокой вязкости создаваемая в подшипниках масляная пленка может быть неустойчивой, В результате возможно возникновение повышенных вибраций и даже повреждение подшипников. Холодное масло перед пуском необходимо разогревать путем прокачки через систему смазки масляным насосом или с помощью специальных подогревателей. Масло, применяемое в системах смазки авиационных двигателей, работающих в составе энергетических ГТУ, при температурах ниже минус 40°С рекомендуется разжижать бензином.
Уровень масла в баках должен находиться в заданных пределах. Перед пуском необходимо убедиться в отсутствии заеданий в штоках поплавковых указателей уровня масла.
Тепловое и механическое состояния установки контролируются прежде всего при работе ГТУ, поэтому до пуска должны быть выяснены и устранены причины неполадок, если работа ГТУ сопровождалась хотя бы одним из перечисленных ниже признаков: повышенной вибрацией или внезапным повышением вибрации (даже если она после этого понизилась и находилась в пределах норм); повышенными температурами баббита или масла на сливе из подшипников; повышенными температурами или неравномерностью температур металла корпусных деталей и газа в турбинах; ненормальными относительными перемещениями роторов и корпусов; пропусками воздуха или газов высокого давления через разъемы ГТУ; течами масла или топлива; большими отклонениями мощности и экономичности ГТУ от нормативных; резким увеличением разности температур в воздухоохладителях; уменьшением запасов устойчивости компрессоров, если они наблюдаются при работе, а также уменьшением продолжительности выбега роторов, помпажем компрессоров, прослушиванием задеваний, металлических звуков или необычных шумов в проточной части при остановах. Точно так же нельзя пускать ГТУ при; наличии повреждений (трещин, обрывов корпусных деталей и трубопроводов, крепежа цилиндра, компенсаторов); неисправной изоляции; ненормальных перемещениях ГТУ при остывании или прослушивании задеваний при вращении роторов валоповоротным устройством или холодных прокрутках пусковым двигателем.

Пуск ГПА является самым ответственным этапом в организации эксплуатации компрессорной станции. Это связано с тем, что при пуске ГПА одновременно включаются в работу очень большое количество систем как самого агрегата, так и вспомогательных систем КС, от подготовки и правильной настройки которых зависит, насколько надежно этот пуск осуществляется .

В процессе трогания роторов ГТУ начинают расти динамические нагрузки, возникают термические напряжения в узлах и деталях от перегрева ГТУ. Рост теплового состояния ведет к изменению линейных размеров лопаток, дисков, изменению зазоров в проточной части, тепловому расширению трубопроводов. При трогании ротора в первый момент не обеспечивается устойчивый гидравлический клин в смазочной системе. Идет процесс перехода роторов с рабочих колодок на установочные. Компрессор ГПА близок к работе в зоне помпажа. Через нагнетатель осуществляется большой расход газа при низкой степени сжатия, что ведет к большим скоростям, особенно для трубопроводов рециркуляции, и вызывает их вибрацию.

Пуск ГПА осуществляется с помощью пусковых устройств. В качестве основных устройств применяются турбодетандеры, работающие в основном за счет давления природного газа, который предварительно очищается и редуцируется до необходимого давления.

Схема обвязки пускового устройства и топливного газа показана на рис 6.9
.

Рис. 6.9 Принципиальная схема системы топливного и пускового газа:

ТГ – топливный газ; ПГ – пусковой газ; ВЗК – воздухозаборная камера;

ТД – турбодетандер; ОК – осевой компрессор; КС – камера сгорания;

ТВД – турбина высокого давления; ТНД – турбина низкого давления;

Н – нагнетатель; РЕГ – регенератор; РК – регулирующий кран

Пуск ГПА включает несколько этапов.

Первый этап – подготовительный, когда идет внешний осмотр оборудования для исключения посторонних предметов, проверяется крепление оборудования, подверженного вибрации, проверяется положение кранов: краны 1, 2, 4, 6 – закрыты, кран 5 – открыт, закрыты краны на линиях подачи пускового газа в турбодетандер и топливного газа в камеру сгорания.

Второй этап – путем имитации производится проверка защит и сигнализации ГПА. При этом защиты разделяются на две группы: защита КС и защита ГПА.

Защита КС – это защита цеха от загазованности, пожара, защита по давлению на выходе станции, защита от аварийных ситуаций на трассе, защита по температуре газа при входе в МГП и др.

Защита ГПА – это защита по давлению масла в маслосистемах (не менее
0,2 кг/см 2), защита по погашению факела в камере сгорания, защита по превышению числа оборотов вала детандера, ТВД, ТНД, защита по температуре подшипников, защита по вибрации и др.


Третий этап – непосредственно пуск ГПА.

Рассмотрим типовой алгоритм запуска стационарного ГПА с полнонапорным нагнетателем. На первом этапе раскрутка ротора осевого компрессора и турбины высокого давления происходит только благодаря работе пускового устройства, а сам алгоритм протекает следующим образом. После нажатия кнопки "Пуск" включается пусковой насос масло-смазки и насос масло-уплотнения. Открывается кран № 4 и при открытом кране № 5 осуществляется продувка контура нагнетателя, в течение 15-20 с. После закрытия крана № 5 и роста давления в нагнетателе до перепада 0,1 МПа на кране № 1 производятся открытие крана № 1, закрытие крана № 4, открытие агрегатного крана № 6. При этом произошло заполнение контура нагнетателя, и такой пуск называется пуском ГПА с заполненным контуром.

Далее включается валоповоротное устройство, вводится в зацепление шестерня турбодетандера, открывается гидравлический клапан № 13. Затем открывается кран № 11, закрывается кран № 10 и отключается валоповоротное устройство. Агрегат начинает вращаться от турбодетандера.

Первый этап раскрутки заканчивается открытием крана № 12 и закрытием крана № 9.

На втором этапе раскрутка роторов производится совместно с турбодетандером и турбиной. При достижении оборотов турбокомпрессора 400÷1000 об/мин включается система зажигания и открывается кран, подающий газ на запальное устройство камеры сгорания. После зажигания через 2-3 с открывается кран № 14 и начинает осуществляться подача газа на дежурную горелку. Через 1-3 мин. после набора температуры ~ 150-200 °С заканчивается первый этап прогрева, открывается регулирующий кран РК на величину 1,5-2 мм и начинается второй этап прогрева, который продолжается ~ 40 с. Затем происходит постепенное увеличение оборотов турбины высокого давления за счет открытия регулирующего крана РК. При достижении оборотов ~ 40÷45 % от номинала турбина выходит на режим. Закрываются краны № 13 и 11, открывается кран № 10. При выходе из зацепления муфты турбодетандера заканчивается второй этап раскрутки ротора.

На третьем этапе происходит дальнейший разгон ротора турбокомпрессора путем постепенного увеличения подачи газа в камеру сгорания. При этом закрываются антипомпажные клапаны осевого компрессора, турбоагрегат переходит работать с пусковых маслонасосов на основные, приводимые во вращение уже от роторов агрегата.

При увеличении частоты вращения до величины, равной частоте вращения других нагнетателей цеха, открывается кран № 2 и закрывается агрегатный кран № 6, включается табло "Агрегат в работе".

Пуск агрегата запрещается:

При неисправности любой, хотя бы одной защиты на ГПА;

При не до конца собранных деталях и трубопроводов агрегата;

При повышенном перепаде масла на фильтрах, неудовлетворительном качестве масла, наличии утечек масла смазки и масла уплотнения;

При неустранении дефектов, обнаруженных на ГПА, до вывода в ремонт;

При вынужденной и аварийной остановках до устранения причины, вызвавшей остановку;

При неисправности системы пожаротушения и контроля загазованности, а также при обнаружении промасленных участков газоходов и воздуховодов.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то