Электронные конфигурации атомов. Электронные конфигурации атомов химических элементов — Гипермаркет знаний

Определите, атомы каких из указанных в ряду элементов имеют на внешнем энергетическом уровне четыре электрона.

Ответ: 35

Пояснение:

Количество электронов на внешнем энергетическом уровне (электронном слое) элементов главных подгрупп равно номеру группы.
Таким образом, из представленных вариантов ответов подходят кремний и углерод, т.к. они находятся в главной подгруппе четвертой группы таблицы Д.И. Менделеева (IVA группа), т.е. верны ответы 3 и 5.

Определите, у атомов каких их указанных в ряду элементов в основном состоянии число неспаренных электронов на внешнем уровне равно 1.

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

Барий — элемент главной подгруппы второй группы и шестого периода Периодической системы Д. И. Менделеева, следовательно, электронная конфигурация его внешнего слоя будет 6s 2 . На внешнем 6s s -орбитали, атома бария расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, и электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1: на 3s -подуровне (состоит из одной s -орбитали) расположено 2 спаренных электрона с противоположными спинами (полное заполнение), а на 3p -подуровне — один неспаренный электрон. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 : на 2s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 2p p -орбиталей (p x , p y , p z ) — три неспаренных электрона, каждый из которых находится на каждой орбитали. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 : на 3s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 3p -подуровне, состоящего из трех p -орбиталей (p x , p y , p z ) — 5 электронов: 2 пары спаренных электронов на орбиталях p x , p y и один неспаренный — на орбитали p z. Таким образом, у хлора в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Кальций — элемент главной подгруппы второй группы и четвертого периода Периодической системы Д. И. Менделеева. Электронная конфигурация его внешнего слоя схожа с электронной конфигурацией атома бария. На внешнем 4s -подуровне, состоящем из одной s -орбитали, атома кальция расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Определите, у атомов каких их указанных в ряду элементов все валентные электроны расположены на 4s -энергетическом подуровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

s 2 3p 5 , т.е. валентные электроны хлора расположены на 3s- и 3p -подуровнях (3-ий период).

Калий — элемент главной подгруппы первой группы и четвертого периода Периодической системы, и электронная конфигурация внешнего слоя атома калия — 4s 1 , т.е. единственный валентный электрон атома калия расположен на 4s -подуровне (4-ый период).

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы, электронная конфигурация внешнего слоя атома брома — 4s 2 4p 5 , т.е. валентные электроны атома брома расположены на 4s- и 4p -подуровнях (4-ый период).

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома фтора — 2s 2 2p 5 , т.е. валентные электроны атома фтора расположены на 2s- и 2p- подуровнях. Однако, ввиду высокой электроотрицательности фтора только единственный электрон, расположенный на 2p- подуровне, участвует в образовании химической связи.

Кальций — элемент главной подгруппы второй группы и четверного периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 4s 2 , т.е. валентные электроны расположены на 4s -подуровне (4-ый период).

Определите, у атомов каких их указанных в ряду элементов валентные электроны расположены на третьем энергетическом уровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя хлора — 3s 2 3p 5 , т.е. валентные электроны хлора расположены на третьем энергетическом уровне (3-ий период).

s 2 2p 3 , т.е. валентные электроны азота расположены на втором энергетическом уровне (2-ой период).

Углерод — элемент главной подгруппы четвертой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 , т.е. валентные электроны атома углерода расположены на втором энергетическом уровне (2-ой период).

Бериллий — элемент главной подгруппы второй группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома бериллия — 2s 2 , т.е. валентные электроны атома бериллия расположены на втором энергетическом уровне (2-ой период).

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 3s 2 3p 3 , т.е. валентные электроны атома фосфора расположены на третьем энергетическом уровне (3-ий период).

Определите, у атомов каких их указанных в ряду элементов на d -подуровнях электронов нет.

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация атома хлора — 1s 2 2s 2 2p 6 3s 2 3p 5 , т.е. d -подуровня у атома хлора не существует.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома фтора — 1s 2 2s 2 2p 5 , т.е. d -подуровня у атома фтора также не существует.

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома брома — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 , т.е. у атома брома существует полностью заполненный 3d -подуровень.

Медь — элемент побочной подгруппы первой группы и четвертого периода Периодической системы, электронная конфигурация атома меди — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 , т.е. у атома меди существует полностью заполненный 3d -подуровень.

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома железа — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 , т.е. у атома железа существует незаполненный 3d -подуровень.

Определите, атомы каких из указанных в ряду элементов относятся к s -элементам.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Гелий — элемент главной подгруппы второй группы и первого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома гелия — 1s 2 , т.е. валентные электроны атома гелия расположены только на 1s -подуровне, следовательно, гелий можно отнести к s -элементам.

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фосфора — 3s 2 3p 3 , следовательно, фосфор относится к p -элементам.

s 2 3p 1 , следовательно, алюминий относится к p -элементам.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 , следовательно, хлор относится к p -элементам.

Литий — элемент главной подгруппы первой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома лития — 2s 1 , следовательно, литий относится к s -элементам.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns 1 np 2 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Бор — элемент главной подгруппы третьей группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома бора в основном состоянии — 2s 2 2p 1 . При переходе атома бора в возбужденное состояние электронная конфигурация становится 2s 1 2p 2 за счет перескока электрона с 2s- на 2p- орбиталь.

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние электронная конфигурация становится 3s 1 3 p 2 за счет перескока электрона с 3s- на 3p- орбиталь.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фтора — 3s 2 3p 5 . В данном случае в возбужденном состоянии невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома железа — 4s 2 3d 6 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Определите, для атомов каких из указанных в ряду элементов возможен переход в возбужденное состояние.

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Рубидий и цезий — элементы главной подгруппы первой группы Периодической системы Д. И. Менделеева, являются щелочными металлами, у атомов которых на внешнем энергетическом уровне расположен один электрон. Поскольку s -орбиталь для атомов данных элементов является внешней, невозможен перескок электрона с s — на p -орбиталь, и следовательно, не характерен переход атома в возбужденное состояние.

Атом азота не способен переходить в возбужденное состояние т.к. заполняемым у него является 2-й энергетический уровень и на этом энергетическом уровне отсутствуют свободные орбитали.

Алюминий — элемент главной подгруппы третьей группы Периодической системы химических элементов, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние происходит перескок электрона с 3s- на 3p- орбиталь, и электронная конфигурация атома алюминия становится 3s 1 3 p 2 .

Углерод — элемент главной подгруппы четвертой группы Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 . При переходе атома углерода в возбужденное состояние происходит перескок электрона с 2s- на 2p- орбиталь, и электронная конфигурация атома углерода становится 2s 1 2p 3 .

Определите, атомам каких из указанных в ряду элементов соответствует электронная конфигурация внешнего электронного слоя ns 2 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Электронная конфигурация внешнего электронного слоя ns 2 np 3 говорит о том, что заполняемым у искомых элементов является p подуровень, т.е. это p -элементы. Все p -элементы расположены в 6-ти последних ячейках каждого периода в группе, номер которой равен сумме электронов на s и p подуровнях внешнего слоя, т.е. 2+3 = 5. Таким образом искомые элементы — азот и фосфор.

Определите, атомы каких из указанных в ряду элементов имеют сходную конфигурацию внешнего энергетического уровня.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34
Среди перечисленных элементов сходную электронную конфигурацию имеют бром и фтор. Электронная конфигурация внешнего слоя имеет вид ns 2 np 5

Определите, атомы каких из указанных в ряду элементов имеют полностью завершенный второй электронный уровень.

Запишите в поле ответа номера выбранных элементов.

Ответ: 13

Пояснение:

Заполненный 2-й электронный уровень имеет благородный газ неон, а также любой химический элемент, расположенный в таблице Менделеева после него.

Определите, у атомов каких из указанных в ряду элементов для завершения внешнего энергетического уровня не достает 2 электронов.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34

До завершения внешнего электронного уровня 2 электрона недостает p -элементам шестой группы. Напомним, что все p -элементы расположены в 6-ти последних ячейках каждого периода.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns 1 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

s 1 np 3 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 4 электрона (1+3). Среди указанных элементов 4 электрона на внешнем уровне имеют только атомы кремния и углерода.

Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 (при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь).

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

Формула внешнего энергетического уровня ns 2 np 4 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 6 электронов (2+4). Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы. Таким образом, электронную конфигурацию ns 2 np 4 среди указанных элементов имеют атомы селена и серы, так как данные элементы расположены в VIA группе.

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют только один неспаренный электрон.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Определите, атомы каких из элементов имеет конфигурацию внешнего электронного уровня ns 2 np 3 .

Ответ: 45

Определите, атомы каких из указанных в ряду элементов в основном состоянии не содержат неспаренных электронов.
Запишите в поле ответа номера выбранных элементов.

Расположение электронов по энергетическим уровням и орбиталям называется электронной конфигурацией. Конфигурация может быть изображена в виде так называемых электронных формул, в которых цифрой впереди указан номер энергетического уровня, затем буквой обозначен подуровень, а вверху справа от буквы - число электронов на данном подуровне. Сумма последних чисел соответствует величине положительного заряда ядра атома. Например, электронные формулы серы и кальция будут иметь следующий вид: S (+ 16) - ls22s22p63s23p\ Са (+ 20) - ls22s22p63s23p64s2. Заполнение электронных уровней осуществляется в соответствии с принципом наименьшей энергии: наиболее устойчивому состоянию электрона в атоме отвечает состояние с минимальным значением энергии. Поэтому вначале заполняются слои с наименьшими значениями энергии. Советский ученый В. Клечковский установил, что энергия электрона возрастает по мере увеличения суммы главного и орбитального квантовых чисел (п + /)> поэтому заполнение электронных слоев происходит в порядке увеличения суммы главного и орбитального квантовых чисел. Если для двух подуровней суммы (п -f1) равны, то сначала идет заполнение подуровней с наименьшим п и наибольшим l9 а затем подуровней с большим п и меньшим L Пусть, к примеру, сумма (п + /) « 5. Этой сумме соответствуют следующие комбинации ли I: п = 3; / 2; п *» 4; 1-1; л = / - 0. Исходя из этого, вначале должно идти заполнение d-подуровня третьего энергетического уровня, далее должен заполняться 4р-подуровень и лишь после этого s-подуровень пятого энергетического уровня. Все вышеразобранное определяет следующий порядок заполнения электронов в атомах: Пример 1 Изобразите электронную формулу атома натрия. Решение Исходя из положения в периодической системе, устанавливают, что натрий является элементом третьего периода. Это свидетельствует о том, что электроны в атоме натрия располагаются на трех энергетических уровнях. По порядковому номеру элемента определяют суммарное количество электронов на этих трех уровнях - одиннадцать. На первом энергетическом уровне (лс1, / = 0; s-подуро-вень) максимальное число электронов равно// « 2п2, N = 2. Распределение электронов на s-подуровне I энергетического уровня отображают записью - Is2, На II энергетическом уровне п = 2, I « 0 (s-подуровень) и I = 1 (р-подуровень) максимальное число электронов равно восьми. Так как на S-подуровне располагается максимальное 2ё, на р-подуровне будет 6ё. Распределение электронов на II энергетическом уровне отображают записью - 2s22p6. На третьем энергетическом уровне возможны S-, р- и d-подуровни. У атома натрия на III энергетическом уровне располагается только один электрон, который, согласно принципу наименьшей энергии, займет Зв-подуровень. Объединяя записи распределения электронов на каждом слое в одну, получают электронную формулу атома натрия: ls22s22p63s1. Положительный заряд атома натрия (+11) компенсируется суммарным количеством электронов (11). Кроме того, структура электронных оболочек изображается с помощью энергетических или квантовых ячеек (орбиталей) - это так называемые графические электронные формулы. Каждая такая ячейка обозначается прямоугольником Q, электрон t> направление стрелки характеризует спин электрона. По принципу Паули в ячейке (орбита-ли) размещается один (неспаренный) или два (спаренных) электрона. Электронную структуру атома натрия можно представить схемой: При заполнении квантовых ячеек необходимо знать правило Гунда: устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня (р, d, f), при котором абсолютное значение суммарного спина атома максимально. Так, если два электрона займут одну орбиталь\]j\ \ \, то их суммарный спин будет равен нулю. Заполнение электронами двух орбиталей 1 т 111 I даст суммарный спин, равный единице. Исходя из принципа Гунда, распределение электронов по квантовым ячейкам, например, для атомов 6С и 7N будет следующим Вопросы и задачи для самостоятельного решения 1. Перечислите все основные теоретические положения, необходимые для заполнения электронов в атомах. 2. Покажите справедливость принципа наименьшей энергии на примере заполнения электронов в атомах кальция и скандия, стронция, иттрия и индия. 3. Какая из графических электронных формул атома фосфора (невозбужденное состояние) является правильной? Ответ мотивируйте с привлечением правила Гунда. 4. Напишите все квантовые числа для электронов атомов: а) натрия, кремния; б) фосфора, хлора; в) серы, аргона. 5. Составьте электронные формулы атомов s-элемента первого и третьего периодов. 6. Составьте электронную формулу атома р-элемента пятого периода, внешний энергетический уровень которого имеет вид 5s25p5. Каковы его химические свойства? 7. Изобразите распределение электронов по орбита-лям в атомах кремния, фтора, криптона. 8. Составьте электронную формулу элемента, в атоме которого энергетическое состояние двух электронов внешнего уровня описывается следующими квантовыми числами: п - 5; 0; т1 = 0; та = + 1/2; та « -1/2. 9. Внешние и предпоследние энергетические уровни атомов имеют следующий вид: а) 3d24s2; б) 4d105s1; в) 5s25p6. Составьте электронные формулы атомов элементов. Укажите р- и d-элементы. 10. Составьте электронные формулы атомов d-злемен-тов, у которых на d-подуровне 5 электронов. 11. Изобразите распределение электронов по квантовым ячейкам в атомах калия, хлора, неона. 12. Наружный электронный слой элемента выражается формулой 3s23p4. Определите порядковый номер и название элемента. 13. Напишите электронные конфигурации следующих ионов: 14. Содержат ли атомы О, Mg, Ti электроны М-уровня? 15. Какие частицы атомов являются изоэлектронны-ми, т. е. содержат одинаковое число электронов: 16. Сколько электронных уровней у атомов в состоянии S2", S4+, S6+? 17. Сколько свободных d-орбиталей в атомах Sc, Ti, V? Напишите электронные формулы атомов этих элементов. 18. Укажите порядковый номер элемента, у которого: а) заканчивается заполнение электронами 4с1-подуров-ня; б) начинается заполнение электронами 4р-подуровня. 19. Укажите особенности электронных конфигураций атомов меди и хрома. Какое число 4в-электронов содержат атомы этих элементов в устойчивом состоянии? 20. Сколько вакантных Зр-орбиталей имеет в стационарном и возбужденном состоянии атом кремния?

Электронная конфигурация атома – показывает распределение ē по энерг. уровням и подуровням.

1s 1 ←число ē с данной формой облака

↖ форма электронного облака

энерг.уровня

Графические электронные формулы (изображения электронной структуры атома) –

показывает распределение ē по энерг. уровням, подуровням и орбиталям.

I период: +1 Н

Где - ē, ↓ - ē с антипараллельными спинами, орбиталь.

При записи графической электронной формулы следует помнить правило Паули и правило Хундда « Если в пределах одного подуровня имеется несколько свободных орбиталей, то ē размещаются каждый на отдельной орбитали и лишь при отсутствии свободных орбиталей объединяются в пары».

(Работа с электронными и графическими электронными формулами).

Напр., H +1 1s 1 ; He +2 1s 2 ; Li +3 1s 2 2s 1 ; Na +11 1s 2 2s 2 2p 6 3s 1 ; Ar +18 1s 2 2s 2 2p 6 3s 2 3p 6 ;

I период: водород и гелий – s-элементы , у них заполняется электронами s-орбиталь.

II период: Li и Be – s-элементы

B, С, N, O, F, Ne – р-элементы

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы делят на 4 электронных семейства или блока:

1) s-элементы у них заполняется ē-ми s-подуровень внешнего слоя атома; к ним относятся водород, гелий и эл-ты гл.п/гр. I и IIгрупп.

2) р-элементы – у них заполняется электронамир-подуровень внешнего уровня атома; к ним относят элементы гл.п/гр. III - VIIIгрупп.

3) d-элементы – у них заполняется электронами d-подуровень предвнешнего уровня атома; к ним относятся эл-ты побоч.п/гр. . I- VIII групп,т.е. эл-ты вставных декад больших периодов, распложенные между s- и р-элементами, их также называют переходными элементами.

4) f-элементы - у них заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды (4f-элементы) и актиноиды (5f-элементы).

У атомов меди и хрома происходит «провал» ē с 4s- на 3d-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций 3d 5 и 3d 10:

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Экспериментально доказано, что состояния атомов, при которых p-, d-, f-орбитали заполнены наполовину (p 3 , d 5 , f 7), целиком (p 6 , d 10 , f 14) или свободны, обладают повышенной устойчивостью. Этим объясняются переходы – «провалы» - электронов между близкорасположенными орбиталями. Те же отклонения наблюдаются у аналога хрома – молибдена, а также у элементов подгруппы меди – серебра и золота. Уникален в этом отношении палладий, у атома которого 5s-электронывообще отсутствуют и который имеет след. Конфигурацию: 46 Pd 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 6 5s 0 4d 10 .

Вопросы для самоконтроля

1. Что такое электронное облако?

2. Чем отличается 1s-орбиталь от 2s-орбитали?

3. Что такое главное квантовое число? Как оно соотносится с номером периода?

4. Что такое подуровень и как это понятие соотносится с номером периода?

5. Составить электронные конфигурации атомов элементов 4-6 периода ПСХЭ.

6. Составить электронную конфигурацию атомов магния и неона.

7. Определить какому атому принадлежит электронная конфигурация 1S 2 2S 2 2p 6 3S 1 , 1S 2 2S 2 2p 6 3S 2 , 1S 2 2S 2 2p 4 , 1S 2 2S 1

ПЛАН ЗАНЯТИЯ № 7

Дисциплина: Химия.

Тема:

Цель занятия: Изучить механизмы образования ионной и ковалентной связи, рассмотреть ионные, атомные и молекулярные кристаллические решетки.

Планируемые результаты

Предметные: владение основополагающими химическими понятиями: химическая связь, ионы, кристаллические решетки, уверенное пользование химической терминологией и символикой; сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;

Метапредметные: использование различных видов познавательной деятельности и основных интеллектуальных операций: составление электронных конфигураций атомов химических элементов.

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

1. Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

2. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

3. Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

5. Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

6. Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Оснащение: Модели кристаллических решеток, учебник, периодическая система химических элементов Д.И.Менделеева.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Тема 7. Ионная и ковалентная химическая связь.

1) Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

2) Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

3) Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

4) Механизм образования ковалентной связи (обменный и донорно-акцепторный).

5) Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

6) Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов:

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона – катиона натрия Na + .

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона – аниона хлора Cl - .

Между образовавшимися ионами Na + и Cl - , имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение – хлорид натрия с ионным типом химической связи.

Ионная связь – это химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев.

1. Атомы металлов, отдавая внешние электроны, превращаются в положительные ионы:

где n - число электронов внешнего слоя атома, соответствующее номеру группы химического элемента.

2. Атомы неметаллов, принимая электроны, недостающие до завершения внешнего электронного слоя , превращаются в отрицательные ионы:

3. Между разноимённо заряженными ионами возникает связь, которая называется ионной.

2. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

Классификация ионов:

1. По знаку заряда: катионы (положительные, K+, Ca2+, H+) и анионы (отрицательные, S2-, Cl-, I-).
2. По составу: сложные ( , ) и простые (Na+, F-)


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12

Электронная конфигурация элемента это запись распределения электронов в его атомах по оболочкам, подоболочкам и орбиталям. Электронная конфигурация обычно записывается для атомов в их основном состоянии. Электронная конфигурация атома, у которого один или несколько электронов находятся в возбужденном состоянии, называется возбужденной конфигурацией. Для определения конкретной электронной конфигурации элемента в основном состоянии существуют следующие три правила: Правило 1: принцип заполнения. Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

Водород; атомный номер = 1; число электронов = 1

Этот единственный в атоме водорода электрон должен занимать s-орбиталь К-обо-лочки, поскольку из всех возможных орбиталей она имеет самую низкую энергию (см. рис. 1.21). Электрон на этой s-орбитали называется ls-электрон. Водород в основном состоянии имеет электронную конфигурацию Is1.

Правило 2: принцип запрета Паули . Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).

Литий; атомный номер = 3; число электронов = 3

Орбиталь с самой низкой энергией-это 1s-орбиталъ. Она может принять на себя только два электрона. У этих электронов должны быть неодинаковые спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин -1/2 стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали схематически можно представить записью (рис. 1.27)

На одной орбитали не могут находиться два электрона с одинаковыми (параллельными) спинами:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, т.е. 2в-орбиталь. Таким образом, литий имеет электронную конфигурацию Is22s1.

Правило 3: правило Гунда . Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

Азот; атомный номер = 7; число электронов = 7 Азот имеет электронную конфигурацию ls22s22p3. Три электрона, находящиеся на 2р-подоболочке, должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины (рис. 1.22).

В табл. 1.6 показаны электронные конфигурации элементов с атомными номерами от 1 до 20.

Таблица 1.6. Электронные конфигурации основного состояния для элементов с атомным номером от 1 до 20

Первоначально элементы в Периодической таблице химических элементов Д.И. Менделеева были расположены в соответствии с их атомными массами и химическими свойствами, но на самом деле оказалось, что решающую роль играет не масса атома, а заряд ядра и, соответственно, число электронов в нейтральном атоме.

Наиболее устойчивое состояние электрона в атоме химического элемента соответствует минимуму его энергии, а любое другое состояние называется возбужденным, в нем электрон может самопроизвольно переходить на уровень с более низкой энергией.

Рассмотрим, как распределяются электроны в атоме по орбиталям, т.е. электронную конфигурацию многоэлектронного атома в основном состоянии. Для построения электронной конфигурации пользуются следующими принципами заполнения орбиталей электронами:

— принцип (запрет) Паули – в атоме не может быть двух электронов с одинаковым набором всех 4-х квантовых чисел;

— принцип наименьшей энергии (правила Клечковского) – орбитали заполняют электронами в порядке возрастания энергии орбиталей (рис. 1).

Рис. 1. Распределение орбиталей водородоподобного атома по энергиям; n – главное квантовое число.

Энергия орбитали зависит от суммы (n + l). Орбитали заполняются электронами в порядке возрастания суммы (n + l) для этих ортиталей. Так, для подуровней 3d и 4s суммы (n + l) будут равны 5 и 4, соответственно, вследствие чего, первой будет заполняться 4s орбиталь. Если сумма (n + l) одинакова для двух орбиталей, то первой заполняется орбиталь с меньшим значением n. Так, для 3d и 4p орбиталей сумма (n + l) будет равна 5 для каждой орбитали, но первой заполняется 3d орбиталь. В соответствии с этими правилами порядок заполнения орбиталей будет следующим:

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<5d<4f<6p<7s<6d<5f<7p

Семейство элемента определяется по орбитали, заполняемой электронами в последнюю очередь, в соответствии с энергией. Однако, нельзя записывать электронные формулы в соответствии с энергетическим рядом.

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 3 5s 2 правильная запись электронной конфигурации

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 3 неверная запись электронной конфигурации

Для первых пяти d – элементов валентными (т.е., электроны, отвечающие за образование химической связи) являются сумма электронов на d и s, заполненных электронами в последнюю очередь. Для p – элементов валентными являются сумма электронов, находящихся на s и p подуровнях. Для s-элементов валентыми являются электроны, находящиеся на s подуровне внешнего энергетического уровня.

— правило Хунда – при одном значении l электроны заполняют орбитали таким образом, чтобы суммарный спин был максимальным (рис. 2)

Рис. 2. Изменение энергии у 1s -, 2s – 2p – орбиталей атомов 2-го периода Периодической системы.

Примеры построения электронных конфигураций атомов

Примеры построения электронных конфигураций атомов приведены в таблице 1.

Таблица 1. Примеры построения электронных конфигураций атомов

Электронная конфигурация

Применяемые правила

Принцип Паули, правила Клечковского

Правило Хунда

1s 2 2s 2 2p 6 4s 1

Правила Клечковского

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то