Боевые торпеды. Понятне об устройстве торпед. Г) по роду заряда ВВ в зарядном отделении

Министерство образования РФ

ТОРПЕДНОЕ ОРУЖИЕ

Методические указания

для самостоятельной работы

по дисциплине

«БОЕВЫЕ СРЕДСТВА ФЛОТА И ИХ БОЕВОЕ ПРИМЕНЕНИЕ»

Торпедное оружие: методические указания для самостоятельной работы по дисциплине «Боевые средства флота и их боевое применение» / Сост.: , ; СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 20с.

Предназначены для студентов всех профилей подготовки.

Утверждено

редакционно-издательским советом университета

в качестве методических указаний

Из истории развития и боевого применения

торпедного оружия

Появление в начале XIX в. бронированных кораблей с тепловыми двигателями обострило необходимость создания оружия, поражающего наиболее уязвимую подводную часть корабля. Таким оружием стала появившаяся в 40-х годах морская мина. Однако она обладала существенным недостатком: была позиционной (пассивной).

Первая в мире самодвижущаяся мина была создана в 1865 г. русским изобретателем.

В 1866 г. проект самодвижущегося подводного снаряда разработал работавший в Австрии англичанин Р. Уайтхед. Он же и предложил назвать снаряд по имени морского ската – «торпедо». Не сумев наладить собственное производство, российское Морское ведомство в 70-х годах закупило партию торпед Уайтхеда. Они проходили дистанцию 800 м со скоростью 17 узлов и несли заряд пироксилина массой 36 кг.

Первая в мире успешная торпедная атака была произведена командиром русского военного парохода лейтенантом (впоследствии – вице-адмиралом) 26 января 1878 г. Ночью, при сильном снегопаде на Батумском рейде, два спущенных с парохода катера подошли на 50 м к турецкому кораблю и одновременно выпустили по торпеде. Корабль быстро затонул почти со всей командой.

Принципиально новое торпедное оружие изменило взгляды на характер вооружённой борьбы на море – от генеральных сражений флоты переходили к ведению систематических боевых действий.

Торпеды 70-80-х годов XIX в. имели существенный недостаток: не имея приборов управления в горизонтальной плоскости, они сильно отклонялись от заданного курса и стрельба на дистанции более 600 м была малоэффективной. В 1896 г. лейтенант австрийского флота Л. Обри предложил первый образец гироскопического прибора курса с пружинным подзаводом, который удерживал торпеду на курсе в течение 3 – 4 мин. На повестку дня стал вопрос увеличения дальности хода.

В 1899 г. лейтенант русского флота изобрёл подогревательный аппарат, в котором сжигался керосин. Сжатый воздух перед подачей его в цилиндры рабочей машины нагревался и совершал уже большую работу. Внедрение подогрева увеличило дальность хода торпед до 4000 м на скоростях до 30 узлов.

В первую мировую войну 49% от общего числа потопленных крупных кораблей пришлось на долю торпедного оружия.

В 1915 г. торпеда впервые была использована с самолёта.

Вторая мировая война ускорила испытания и принятие на вооружение торпед с неконтактными взрывателями (НВ), системами самонаведения (ССН) и электрическими энергоустановками.

В последующие годы, несмотря на оснащение флотов новейшим ракетно-ядерным оружием , торпеды не утратили своего значения. Являясь самым эффективным противолодочным средством, они состоят на вооружении всех классов надводных кораблей (НК), подводных лодок (ПЛ) и морской авиации, а также стали основным элементом современных противолодочных ракет (ПЛУР) и неотъемлемой частью многих образцов современных морских мин. Современная торпеда – это сложный единый комплекс систем движения, управления движением, самонаведения и неконтактного подрыва заряда, созданных на основе современных достижений науки и техники.

1.ОБЩИЕ СВЕДЕНИЯ О ТОРПЕДНОМ ОРУЖИИ

1.1. Назначение, состав и размещение комплексов

торпедного оружия на корабле

Торпедное оружие (ТО) предназначено:

Для поражения подводных лодок (ПЛ), надводных кораблей (НК)

Разрушения гидротехнических и портовых сооружений.

Для этих целей применяются торпеды, состоящие на вооружении надводных кораблей, подводных лодок и самолетов (вертолетов) морской авиации. Кроме того, они используются в качестве боевых частей противолодочных ракет и мин-торпед.

Торпедное оружие представляет собой комплекс, включающий в себя:

Боекомплект торпед одного или нескольких типов;

Пусковые установки торпед – торпедные аппараты(ТА);

Приборы управления торпедной стрельбой (ПУТС);

Комплекс дополняется оборудованием, предназначенным для погрузки и выгрузки торпед, а также устройствами контроля за их состоянием в период хранения на носителе.

Число торпед в боекомплекте, в зависимости от типа носителя, составляет:

На НК – от 4 до 10;

На ПЛ – от 14-16 до 22-24.

На отечественных НК весь запас торпед размещается в торпедных аппаратах, установленных побортно на больших кораблях, и в диаметральной плоскости на средних и малых кораблях. Эти ТА являются поворотными, что обеспечивает их наведение в горизонтальной плоскости. На торпедных катерах ТА устанавливаются побортно неподвижно и являются ненаводящимися (стационарными).

На атомных ПЛ торпеды хранятся в первом (торпедном) отсеке в трубах ТА (4-8), а запасные – на стеллажах.

На большинстве дизель-электрических ПЛ торпедными отсеками являются первый и концевой.

ПУТС – комплекс приборов и линий связи – размещается на главном командном пункте корабля (ГКП), командном пункте командира минно-торпедной боевой части (БЧ-3) и на торпедных аппаратах.

1.2. Классификация торпед

Торпеды могут быть классифицированы по целому ряду признаков.

1. По предназначению:

Против ПЛ – противолодочные;

НК – противокорабельные;

НК и ПЛ – универсальные.

2. По носителям:

Для ПЛ – лодочные;

НК – корабельные;

ПЛ и НК – унифицированные;

Самолетов (вертолетов) – авиационные;

Противолодочных ракет;

Мин - торпед.

3. По типу энергосиловой установки (ЭСУ):

Парогазовые (тепловые);

Электрические;

Реактивные.

4. По способам управления:

С автономным управлением (АУ);

Самонаводящиеся (СН+АУ);

Телеуправляемые (ТУ + АУ);

С комбинированным управлением (АУ+СН+ТУ).

5. По типу взрывателя:

С контактным взрывателем (КВ);

С неконтактным взрывателем (НВ);

С комбинированным взрывателем (КВ+НВ).

6. По калибру:

400 мм; 533 мм; 650 мм.

Торпеды калибра 400 мм называют малогабаритными, 650 мм – тяжелыми. Большинство иностранных малогабаритных торпед имеют калибр 324 мм.

7. По режимам хода:

Однорежимные;

Двухрежимные.

Режимом в торпеде называют ее скорость и соответствующую этой скорости максимальную дальность хода. У двухрежимной торпеды, в зависимости от типа цели и тактической ситуации, режимы могут переключаться по ходу движения.

1.3. Основные части торпед



Любая торпеда конструктивно состоит из четырех частей (рис 1.1). Головная часть – боевое зарядное отделение (БЗО).Здесь размещаются: заряд взрывчатого вещества (ВВ), запальная принадлежность, контактный и неконтактный взрыватель. К переднему срезу БЗО крепится головка аппаратуры самонаведения.

В качестве ВВ в торпедах используются смесевые бризантные вещества с тротиловым эквивалентом 1,6-1,8. Масса ВВ, в зависимости от калибра торпеды, составляет 30-80 кг, 240-320 кг и до 600 кг соответственно.

Среднюю часть электрической торпеды называют аккумуляторным отделением, которое, в свою очередь, разделяется на батарейный и приборные отсеки. Здесь размещаются: источники энергии – батарея аккумуляторов, элементы пускорегулирующей аппаратуры, баллон с воздухом высокого давления и электродвигатель.

В парогазовой торпеде аналогичная составная часть носит название отделения энергокомпонентов и пускорегулирующей аппаратуры. В ней размещаются емкости с горючим, окислителем, пресной водой и тепловая машина – двигатель.

Третья составная часть торпеды любого типа называется кормовым отделением. Оно имеет конусообразную форму и содержит приборы управления движением, источники и преобразователи электроэнергии, а также основные элементы пневмогидравлической схемы.

К заднему срезу кормового отделения крепится четвертый составной элемент торпеды – хвостовая часть, заканчивающаяся движителями: гребными винтами или реактивным соплом.

На хвостовой части размещаются вертикальные и горизонтальные стабилизаторы, а на стабилизаторах – органы управления движением торпеды – рули.

1.4. Назначение, классификация, основы устройства

и принципы действия торпедных аппаратов

Торпедные аппараты (ТА) являются пусковыми установками и предназначены:

Для хранения торпед на носителе;

Введения в приборы управления движением торпеды установочных

данных (данных стрельбы);

Придания торпеде направления первоначального движения

(в поворотных ТА подводных кораблей);

Производства выстрела торпеды;

Торпедные аппараты ПЛ кроме этого могут быть использованы в качестве пусковых установок противолодочных ракет, а также для хранения и постановки морских мин.

ТА классифицируются по ряду признаков:

1) по месту установки:

2) по степени подвижности:

Поворотные (только на НК),

Неповоротные;

3) по количеству труб:

Однотрубные,

Многотрубные (только на НК);

4) по калибру:

Малого (400 мм, 324 мм),

Среднего (533 мм),

Крупного (650 мм);

5) по способу выстреливания

Пневматические,

Гидравлические (на современных ПЛ),

Пороховые (на малых НК).



Устройство ТА надводного корабля показано на рис 1.2. Внутри трубы ТА по всей ее длине располагаются четыре направляющие дорожки.

Внутри трубы ТА (рис. 1.3) по всей ее длине располагаются четыре направляющие дорожки.

Расстояние между противоположными дорожками соответствует калибру торпеды. В передней части трубы располагаются два обтюрирующих кольца, внутренний диаметр которых также равен калибру торпеды. Кольца препятствуют прорыву вперед рабочего тела (воздуха, воды, газа), подаваемого в заднюю часть трубы для выталкивания торпеды из ТА.

У всех ТА каждая труба имеет независимое устройство для производства выстрела. Вместе с тем, предусмотрена возможность залповой стрельбы из нескольких аппаратов с интервалом 0,5 – 1 с. Выстрел может производиться дистанционно с ГКП корабля или непосредственно с ТА, вручную.

Выстреливание торпеды производится путем подачи в кормовую часть ТА избыточного давления, обеспечивающего скорость выхода торпеды ~ 12 м/с.

ТА подводной лодки – стационарный, однотрубный. Число ТА в торпедном отсеке ПЛ – шесть или четыре. Каждый аппарат имеет прочные заднюю и переднюю крышки, заблокированные друг с дружкой. Это не дает возможности открыть заднюю крышку при открытой передней и наоборот. Подготовка аппарата к выстрелу включает заполнение его водой, выравнивание давления с забортным и открывание передней крышки.

У первых ТА ПЛ воздух, выталкивающий торпеду, выходил из трубы и всплывал на поверхность, образуя большой воздушный пузырь, демаскирующий подводную лодку. В настоящее время все ПЛ оснащаются системой беспузырной торпедной стрельбы (БТС). Принцип действия этой системы состоит в том, что после прохождения торпедой 2/3 длины ТА в его передней части автоматически открывается клапан, через который отработавший воздух выходит в трюм торпедного отсека.

На современных ПЛ для уменьшения шумности выстрела и обеспечения возможности стрельбы на больших глубинах устанавливаются гидравлические системы стрельбы. В качестве примера такая система приведена на рис. 1.4.

Последовательность операций при работе системы следующая:

Открывание автоматического забортного клапана (АЗК);

Выравнивание давления внутри ТА с забортным;

Закрывание АЗК;

Открывание передней крышки ТА;

Открывание воздушного клапана (ВК);

Движение поршней;

Перемещение воды в ТА;

Выстреливание торпеды;

Закрывание передней крышки;

Осушение ТА;

Открывание задней крышки ТА;



- загрузка стеллажной торпеды;

Закрывание задней крышки.

1.5. Понятие о приборах управления торпедной стрельбой

ПУТС предназначены для выработки данных, необходимых для прицельной стрельбы. Так как цель движется, возникает потребность решения задачи встречи торпеды с целью, т. е. нахождения той упреждённой точки, где эта встреча должна произойти.

Для решения поставленной задачи (рис. 1.5) необходимо:

1) обнаружить цель;

2) определить её местоположение относительно атакующего корабля, т. е. установить координаты цели – дистанцию Д0 и курсовой угол на цель КУ0 ;

3) определить параметры движения цели (ПДЦ) – курс Kц и скорость V ц;

4) рассчитать угол упреждения j, на который необходимо направить торпеду, т. е. рассчитать так называемый торпедный треугольник (на рис.1.5 выделен утолщёнными линиями). При этом допускается, что курс и скорость цели постоянны;

5) ввести необходимую информацию через ТА в торпеду.


обнаружения целей и определения их координат. Надводные цели обнаруживаются радиолокационными станциями (РЛС), подводные – гидроакустическими станциями (ГАС);

2) определения параметров движения цели. В их качестве используются ЭВМ или иные счетно-решающие приборы (СРП);

3) расчёта торпедного треугольника, также ЭВМ или иные СРП;

4) передачи и ввода информации в торпеды и контроля введённых в них данных. Таковыми могут быть линии синхронной связи и следящие устройства.

На рис.1.6 приведен вариант ПУТС, предусматривающий использование в качестве основного устройства обработки информации электронной системы, являющейся одной из схем общекорабельной боевой информационной управляющей системы (БИУС), и, как резервной – электромеханической. Такая схема применяется на современных под


ПГЭСУ торпед являются разновидностью тепловой машины (рис. 2.1). Источником энергии в тепловых ЭСУ является топливо, представляющее собою совокупность горючего и окислителя.

Используемые в современных торпедах виды топлива могут быть:

Многокомпонентными (горючее – окислитель – вода) (рис.2.2);

Унитарными (горючее смешано с окислителем – вода);

Твёрдые пороховые;



- твёрдые гидрореагирующие.

Тепловая энергия топлива образуется в результате химической реакции окисления или разложения веществ, входящих в его состав.

Температура сгорания топлива составляет 3000…4000°C. При этом возникает возможность размягчения материалов, из которых изготовлены отдельные узлы ЭСУ. Поэтому вместе с топливом в камеру сгорания подают воду, что снижает температуру продуктов сгорания до 600…800°C. Кроме того, впрыскивание пресной воды увеличивает объём парогазовой смеси, что существенно повышает мощность ЭСУ.

В первых торпедах использовалось топливо, включавшее в себя керосин и сжатый воздух в качестве окислителя. Такой окислитель оказался малоэффективным из-за низкого содержания кислорода. Составная часть воздуха – азот , не растворимая в воде, выбрасывалась за борт и являлась причиной демаскирующего торпеду следа. В настоящее время в качестве окислителей используют чистый сжатый кислород или маловодную перекись водорода . При этом продуктов сгорания, не растворимых в воде, почти не образуется и след практически не заметен.

Применение жидких унитарных топлив позволило упростить топливную систему ЭСУ и улучшить условия эксплуатации торпед.

Твёрдые топлива, являющиеся унитарными, могут быть мономолекулярными или смесевыми. Чаще используются последние. Они состоят из органического горючего, твёрдого окислителя и различных добавок. Количество выделяемого при этом тепла можно регулировать количеством подаваемой воды. Применение таких видов топлива исключает необходимость нести на борту торпеды запас окислителя. Это снижает массу торпеды, что значительно повышает скорость и дальность её

Двигатель парогазовой торпеды, в котором тепловая энергия преобразуется в механическую работу вращения гребных винтов, является одним из её главных агрегатов. Он определяет основные тактико-технические данные торпеды – скорость, дальность, следность, шумность.

Торпедные двигатели имеют ряд особенностей, которые отражаются на их конструкции:

Кратковременность работы;

Минимальное время выхода на режим и строгое его постоянство;

Работа в водной среде с высоким противодавлением выхлопу;

Минимальные масса и габариты при большой мощности;

Минимальный расход топлива.

Торпедные двигатели подразделяются на поршневые и турбинные. В настоящее время наибольшее распространение получили последние (рис. 2.3).

Энергокомпоненты подаются в парогазогенератор, где поджигаются зажигательным патроном. Образующаяся парогазовая смесь под дав



лением поступает на лопатки турбины, где, расширяясь, совершает работу. Вращение колеса турбины через редуктор и дифференциал передается на внутренний и внешний гребные валы, вращающиеся в противоположные стороны.

В качестве движителей большинства современных торпед используются гребные винты. Передний винт – на наружном валу с правым вращением, задний – на внутреннем – с левым. Благодаря этому уравновешиваются моменты сил, отклоняющих торпеду от заданного направления движения.

Эффективность двигателей характеризуется величиной коэффициента полезного действия с учётом влияния гидродинамических свойств корпуса торпеды. Коэффициент снижается при достижении винтами частоты вращения, при которой на лопастях начинается

кавитация 1 . Одним из путей борьбы с этим вредным явлением стало



применение насадок на винты, позволяющее получить водомётный движитель (рис. 2.4).

К числу основных недостатков ЭСУ рассмотренного типа относятся:

Высокая шумность связанная с большим числом быстро вращающихся массивных механизмов и наличием выхлопа;

Снижение мощности двигателя и, как следствие, скорости хода торпеды с ростом глубины, обусловленное увеличением противодавления выхлопным газам;

Постепенное уменьшение массы торпеды при её движении вследствие расхода энергокомпонентов;

Поиски путей, обеспечивающих исключение перечисленных недостатков, привели к созданию электрических ЭСУ.

2.1.2. Электрические ЭСУ торпед

Источниками энергии электрических ЭСУ являются химические вещества (рис. 2.5).

Химические источники тока должны отвечать ряду требований:

Допустимость высоких разрядных токов;

Работоспособность в широком интервале температур;

Минимальный саморазряд при хранении и отсутствие газовыделения;


1 Кавитация – образование в капельной жидкости полостей, заполненных газом, паром или их смесью. Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения.

Малые габариты и масса.

Наиболее широкое распространение в современных боевых торпедах нашли батареи одноразового действия.

Главным энергетическим показателем химического источника тока является его ёмкость – количество электричества, которое может отдать полностью заряженная батарея при разряде током определённой силы. Она зависит от материала, конструкции и величины активной массы пластин источников, разрядного тока, температуры, концентрации электро



лита и др.

Впервые в электрических ЭСУ были применены свинцово-кислотные аккумуляторные батареи (АБ). Их электроды: перекись свинца («-») и чистый губчатый свинец («+»), помещались в раствор серной кислоты. Удельная ёмкость таких батарей составляла 8 Вт · ч/кг массы, что в сравнении с химическими топливами было незначительной величиной. Торпеды с такими АБ имели малые скорость и дальность хода. Кроме этого, данные АБ имели высокий уровень саморазряда, а это требовало их периодической подзарядки при хранении на носителе, что было неудобно и небезопасно.

Следующим шагом в совершенствовании химических источников тока явилось применение щелочных АБ. В этих АБ в щелочной электролит помещались железоникелевые, кадмиево-никелевые или серебряно-цинковые электроды. Такие источники имели удельную ёмкость в 5-6 раз больше, чем свинцово-кислотные, что позволило резко увеличить скорость и дальность хода торпед. Их дальнейшее развитие привело к появлению одноразовых серебряно-магниевых батарей, использующих в качестве электролита забортную морскую воду. Удельная ёмкость таких источников возросла до 80 Вт · ч /кг, что вплотную приблизило скорости и дальности электрических торпед к аналогичным параметрам парогазовых.

Сравнительная характеристика источников энергии электрических торпед приведена в табл. 2.1.

Таблица 2.1

Двигателями электрических ЭСУ являются электродвигатели (ЭД) постоянного тока последовательного возбуждения (рис. 2.6).

Большинство торпедных ЭД являются двигателями бирототивного типа, в которых якорь и магнитная система вращаются одновременно в противоположные стороны. Они имеют большую мощность и не нуждаются в дифференциале и редукторе, что значительно снижает шумность и увеличивает удельную мощность ЭСУ.

Движители электрических ЭСУ аналогичны движителям парогазовых торпед.

Достоинствами рассмотренных ЭСУ являются:

Низкая шумность;

Постоянная, не зависящая от глубины хода торпеды мощность;

Неизменность массы торпеды в течение всего времени её движения.

К недостаткам следует отнести:


Источниками энергии реактивных ЭСУ являются вещества, приведённые на рис. 2.7.

Они представляют собой топливные заряды, выполненные в виде цилиндрических шашек или стержней, состоящих из смеси комбинаций представленных веществ (горючего, окислителя и добавок). Эти смеси обладают свойствами пороха. Реактивные двигатели не имеют промежуточных элементов – механизмов и гребных винтов. Основные части такого двигателя – камера сгорания и реактивное сопло. В конце 80-х годов в некоторых торпедах начали использовать гидрореагирующие топлива – сложные по составу твёрдые вещества на основе алюминия , магния или лития. Подогретые до температуры плавления, они бурно реагируют с водой, выделяя большое количество энергии.

2.2. Системы управления движением торпед

Движущаяся торпеда совместно с окружающей её морской средой образует сложную гидродинамическую систему. Во время движения на торпеду действуют:

Сила тяжести и выталкивающая сила;

Тяга двигателя и сопротивление воды;

Внешние воздействующие факторы (волнение моря, изменение плотности воды и др.). Первые два фактора известны и могут быть учтены. Последние – имеют случайный характер. Они нарушают динамическое равновесие сил, отклоняют торпеду от расчётной траектории.

Системы управления (рис. 2.8) обеспечивают:

Устойчивость движения торпеды на траектории;

Изменение траектории движения торпеды в соответствии с заданной программой;


В качестве примера рассмотрим структуру и принцип действия сильфонно - маятникового автомата глубины, изображенного на рис. 2.9.

Основой прибора является гидростатический аппарат на базе сильфона (гофрированная труба с пружиной) в комбинации с физическим маятником. Давление воды воспринимается крышкой сильфона. Оно уравновешивается пружиной, упругость которой устанавливается перед выстрелом в зависимости от заданной глубины движения торпеды.

Действие прибора осуществляется в следующей последовательности:

Изменение глубины торпеды относительно заданной;

Сжатие (или растяжение) пружины сильфона;

Перемещение зубчатой рейки;

Вращение шестерни;

Поворот эксцентрика;

Смещение балансира;

Движение клапанов золотника;

Перемещение поршня рулевой машинки;

Перекладка горизонтальных рулей;

Возврат торпеды на установленную глубину.

В случае появления дифферента торпеды происходит отклонение маятника от вертикального положения. При этом аналогично предыдущему перемещается балансир, что приводит к перекладке тех же рулей.

Приборы управления движением торпеды по курсу (K Т )

Принцип построения и действия прибора может быть пояснён схемой, изображённой на рис. 2.10.

Основой прибора является гироскоп с тремя степенями свободы. Он представляет собой массивный диск с лунками (углублениями). Сам диск подвижно укреплён в рамках, образующих так называемый кардановый подвес.

В момент выстрела торпеды воздух высокого давления из воздушного резервуара поступает на лунки ротора гироскопа. За 0.3…0,4 с ротор набирает до 20000 оборотов в минуту. Дальнейшее увеличение числа оборотов до 40000 и поддержание их на дистанции производится путем подачи напряжения на ротор гироскопа, являющегося якорем асинхронного ЭД переменного тока частотой 500 Гц. При этом гироскоп приобретает свойство сохранять неизменным направление своей оси в пространстве. Эта ось устанавливается в положение, параллельное продольной оси торпеды. В таком случае токосъёмник диска с полукольцами находится на изолированном зазоре между полукольцами. Цепь питания реле разомкнута, контакты реле KP тоже разомкнуты. Положение клапанов золотника определяется пружиной.



При отклонении торпеды от заданного направления (курса) поворачивается диск, связанный с корпусом торпеды. Токосъёмник оказывается на полукольце. Через обмотку реле начинает протекать ток. Замыкаются контакты Kp. Электромагнит получает питание, его стержень опускается вниз. Клапаны золотника смещаются, рулевая машинка перекладывает вертикальные рули. Торпеда возвращается к установленному курсу.

Если на корабле установлен неподвижный торпедный аппарат, то при торпедной стрельбе к углу упреждения j (см. рис.1.5) должен быть алгебрарически приплюсован курсовой угол, под которым находится цель в момент залпа (q 3 ). Полученный угол (ω), называемый углом гироскопического прибора, или углом первого поворота торпеды, может быть введён в торпеду перед выстрелом путём поворота диска с полукольцами. Таким образом исключается необходимость изменения курса корабля.

Приборы управления торпедой по крену (γ)

Крен торпеды – это поворот её вокруг продольной оси. Причинами крена являются циркуляция торпеды, перегребание одного из винтов и др. Крен приводит к отклонению торпеды от заданного курса и смещениям зон реагирования системы самонаведения и неконтактного взрывателя.

Креновыравнивающий прибор представляет собой сочетание гировертикали (вертикально установленного гироскопа) с маятником, перемещающимся в перпендикулярной плоскости, продольной оси торпеды. Прибор обеспечивает перекладку органов управления γ – элеронов в разные стороны – «враздрай» и, таким образом, возвращение торпеды к значению крена, близкому к нулю.

Приборы маневрирования



Предназначены для программного маневрирования торпеды по курсу на траектории движения. Так, например, в случае промаха торпеда начинает циркуляцию или зигзаг, обеспечивая неоднократное пересечение курса цели (рис. 2.11).

Прибор связан с наружным гребным валом торпеды. По числу оборотов вала определяется пройденное расстояние. В момент достижения установленной дистанции начинается маневрирование. Дистанция и вид траектории маневрирования вводятся в торпеду перед выстрелом.

Точность стабилизации движения торпеды по курсу приборами автономного управления, имея погрешность ~1% от пройденной дистанции, обеспечивает эффективную стрельбу по целям, идущим постоянным курсом и скоростью на дистанции до 3,5…4 км. На больших дистанциях эффективность стрельбы падает. При движении цели переменными курсом и скоростью точность стрельбы становится неприемлемой даже и на меньших расстояниях.

Стремление повысить вероятность поражения надводной цели, а также обеспечить возможность поражения ПЛ в подводном положении на неизвестной глубине, привели к появлению в 40-х годах торпед с системами самонаведения.

2.2.2. Системы самонаведения

Системы самонаведения (ССН) торпед обеспечивают:

Обнаружение целей по их физическим полям;

Определение положения цели относительно продольной оси торпеды;

Выработку необходимых команд рулевым машинкам;

Наведение торпеды на цель с точностью, необходимой для срабатывания неконтактного взрывателя торпеды.

ССН значительно повышает вероятность поражения цели. Одна самонаводящаяся торпеда эффективнее залпа из нескольких торпед с автономными системами управления. Особенно важны ССН при стрельбе по ПЛ, находящимися на большой глубине.

ССН реагирует на физические поля кораблей. Наибольшей дальностью распространения в водной среде обладают акустические поля. Поэтому ССН торпед являются акустическими и подразделяются на пассивные, активные и комбинированные.

Пассивные ССН

Пассивные акустические ССН реагируют на первичное акустическое поле корабля – его шум. Работают скрытно. Однако плохо реагируют на тихоходные (из-за слабого шума) и обесшумленные корабли. В этих случаях шум самой торпеды может оказаться больше шума цели.

Возможность обнаружения цели и определения её положения относительно торпеды обеспечивается созданием гидроакустических антенн (электроакустических преобразователей – ЭАП), обладающих направленными свойствами (рис. 2.12, а).

Наиболее широкое применение получили равносигнальный и фазоамплитудный методы.


В качестве примера рассмотрим ССН, использующую фазоамплитудный метод (рис. 2.13).

Приём полезных сигналов (шума движущегося объекта) осуществляется ЭАП, состоящим из двух групп элементов, формирующих одну диаграмму направленности (рис. 2.13, а). При этом в случае отклонения цели от оси диаграммы на выходах ЭАП действуют два равных по значению, но сдвинутых по фазе j напряжения E 1 и E 2. (рис. 2.13, б).

Фазосдвигающее устройство сдвигает оба напряжения по фазе на один и тот же угол u (обычно равный p/2) и производит суммирование действующих сигналов следующим образом:

E 1+ E 2= U 1 и E 2+ E 1= U 2.

В результате этого напряжение одинаковой амплитуды, но разной фазы E 1 и E 2 преобразуются в два напряжения U 1 и U 2 одной и той же фазы, но разной амплитуды (отсюда название метода). В зависимости от положения цели относительно оси диаграммы направленности можно получить:

U 1 > U 2 – цель правее оси ЭАП;

U 1 = U 2 – цель на оси ЭАП;

U 1 < U 2 – цель левее оси ЭАП.

Напряжения U 1 и U 2 усиливаются, преобразуются детекторами в постоянные напряжения U ’1 и U ’2 соответствующей величины и подаются на анализирующе-командное устройство АКУ. В качестве последнего может быть использовано поляризованное реле с якорем, находящемся в нейтральном (среднем) положении (рис. 2.13, в).

При равенстве U ’1 и U ’2 (цель на оси ЭАП) ток в обмотке реле равен нулю. Якорь неподвижен. Продольная ось движущейся торпеды направлена на цель. В случае смещения цели в ту или иную сторону через обмотку реле начинает протекать ток соответствующего направления. Возникает магнитный поток, отклоняющий якорь реле и вызывающий перемещение золотника рулевой машинки. Последняя обеспечивает перекладку рулей, а значит и поворот торпеды до возвращения цели на продольную ось торпеды (на ось диаграммы направленности ЭАП).

Активные ССН

Активные акустические ССН реагируют на вторичное акустическое поле корабля – отражённые сигналы от корабля или от его кильватерной струи (но не на шум корабля).

В своём составе они должны иметь, помимо рассмотренных ранее узлов, передающее (генерирующее) и коммутационное (переключающее) устройства (рис.2.14). Коммутационное устройство обеспечивает переключение ЭАП с излучения на приём.


Газовые пузырьки являются отражателями звуковых волн. Длительность сигналов, отражённых от кильватерной струи, больше длительности излучаемых. Это отличие и используется как источник информации о КС.

Торпеда выстреливает со смещением точки прицеливания в сторону, противоположную направлению движения цели так, чтобы она оказалась за кормой цели и пересекла кильватерную струю. Как только это происходит, торпеда делает поворот в сторону цели и снова входит в кильватерную струю под углом порядка 300. Так продолжается до момента прохождения торпеды под целью. В случае проскакивания торпеды перед носом цели торпеда делает циркуляцию, снова обнаруживает кильватерную струю и повторно осуществляет маневрирование.

Комбинированные ССН

Комбинированные системы включают в себя как пассивную, так и активную акустические ССН, что позволяет исключить недостатки каждой в отдельности. Современные ССН обнаруживают цели на дистанциях до 1500…2000 м. Поэтому при стрельбе на большие дистанции и особенно по резко маневрирующей цели возникает необходимость корректуры курса торпеды до момента захвата цели ССН. Эту задачу выполняют системы телеуправления движением торпеды.

2.2.3. Системы телеуправления

Системы телеуправления (ТУ) предназначены для коррекции траектории движения торпеды с корабля-носителя.

Телеуправление осуществляется по проводу (рис. 2.16, а, б).

Чтобы уменьшить натяжение провода при движении и корабля, и торпеды используют две одновременно разматывающиеся вьюшки. На подводной лодке (рис. 2.16, а) вьюшка 1 размещается в ТА и выстреливается вместе с торпедой. Она удерживается бронированным кабелем длиной порядка тридцати метров.

Принцип построения и действия системы ТУ поясняется рис. 2.17. С помощью гидроакустического комплекса и его индикатора осуществляется обнаружение цели. Полученные данные о координатах этой цели поступают в счетно-решающий комплекс. Сюда же подаются сведения о параметрах движения своего корабля и установленной скорости торпеды. Счетно-решающий комплекс вырабатывает курс торпеды КТ и h T –глубину ее движения. Эти данные вводятся в торпеду, и производится выстрел.



С помощью датчика команд осуществляется преобразование текущих параметров КТ и h T в серию импульсных электрических кодированных сигналов управления. Эти сигналы по проводу передаются на торпеду. Система управления торпеды декодирует принятые сигналы и преобразует их в напряжения, являющиеся управляющими для работы соответствующих каналов управления.

В случае необходимости, наблюдая на индикаторе гидроакустического комплекса носителя за положением торпеды и цели, оператор, используя пульт управления, может корректировать траекторию движения торпеды, направляя ее на цель.

Как уже было отмечено, на больших дистанциях (более 20 км) ошибки телеуправления (из-за ошибок гидроакустического комплекса) могут составлять сотни метров. Поэтому систему ТУ совмещают с системой самонаведения. Последняя включается по команде оператора на расстоянии 2…3 км от цели.

Рассмотренная система ТУ является односторонней. Если с торпеды на корабль поступают сведения о состоянии бортовых приборов торпеды, траектории ее движения, характере маневрирования цели, то такая система ТУ будет двухсторонней. Новые возможности в реализации двухсторонних систем ТУ торпедой открывает применение волоконно - оптических линий связи.

2.3. Запальная принадлежность и взрыватели торпед

2.3.1. Запальная принадлежность

Запальной принадлежностью (ЗП) боевого заряда торпеды называют совокупность первичного и вторичного детонаторов.

Состав ЗП обеспечивает ступенчатую детонацию ВВ БЗО, что повышает безопасность обращения с окончательно приготовленной торпедой, с одной стороны, и гарантирует надежную и полную детонацию всего заряда – с другой.

Первичный детонатор (рис. 2.18), состоящий из капсюля воспламенителя и капсюля детонатора, снаряжается высокочувствительными (инициирующими) ВВ – гремучей ртутью или азидом свинца, которые взрываются от накола или нагрева. В целях безопасности первичный детонатор содержит небольшое количество ВВ, недостаточное для взрыва основного заряда.



Вторичный детонатор – запальный стакан – содержит менее чувствительное бризантное ВВ – тетрил, флегматизированный гексоген в количестве 600…800 г. Этого количества уже достаточно для детонации всего основного заряда БЗО.

Таким образом, взрыв осуществляется по цепочке: взрыватель – капсюль-воспламенитель – капсюль-детонатор – запальный стакан – заряд БЗО.

2.3.2. Контактные взрыватели торпед

Контактный взрыватель (КВ) торпеды предназначен для накола капсюля воспламенителя первичного детонатора и вызова тем самым взрыва основного заряда БЗО в момент контакта торпеды с бортом цели.

Наибольшее распространение получили контактные взрыватели ударного (инерционного) действия. При ударе торпеды в борт цели инерционное тело (маятник) отклоняется от вертикального положения и освобождает боёк, который под действием боевой пружины движется вниз и накалывает капсюль – воспламенитель.

При окончательном приготовлении торпеды к выстрелу контактный взрыватель соединяется с запальной принадлежностью и устанавливается в верхнюю часть БЗО.

Во избежание взрыва снаряжённой торпеды от случайного сотрясения или удара о воду инерционная часть взрывателя имеет предохранительное устройство, стопорящее боёк. Стопор связан с вертушкой, начинающей вращение с началом движения торпеды в воде. По прохождении торпедой дистанции около 200 м червяк вертушки расстопоривает боёк и взрыватель приходит в боевое положение.

Стремление воздействовать на самую уязвимую часть корабля – его днище и обеспечить при этом неконтактный подрыв заряда БЗО, производящий больший разрушительный эффект, привело к созданию в 40-х годах неконтактного взрывателя.

2.3.3. Неконтактные взрыватели торпед

Неконтактный взрыватель (НВ) замыкает цепь запала на подрыв заряда БЗО в момент прохождения торпеды вблизи цели под воздействием на взрыватель того или иного физического поля цели. При этом глубина хода противокорабельной торпеды устанавливается на несколько метров больше величины предполагаемой осадки корабля – цели.

Наиболее широкое применение получили акустические и электромагнитные неконтактные взрыватели.



Устройство и действие акустического НВ поясняет рис. 2.19.

Импульсный генератор (рис. 2.19, а) вырабатывает кратковременные импульсы электрических колебаний ультразвуковой частоты, следующие через малые промежутки времени. Через коммутатор они поступают на электроакустические преобразователи (ЭАП), преобразующие электрические колебания в ультразвуковые акустические, распространяющиеся в воде в пределах зоны, показанной на рисунке.

При прохождении торпеды вблизи цели (рис. 2.19, б) от последней будут получены отражённые акустические сигналы, которые воспринимаются и преобразуются ЭАП в электрические. После усиления они анализируются в исполнительном устройстве и запоминаются. Получив несколько аналогичных отражённых сигналов подряд, исполнительное устройство подключает источник питания к запальной принадлежности – происходит взрыв торпеды.



Устройство и действие электромагнитного НВ поясняется рис. 2.20.

Кормовая (излучающая) катушка создаёт переменное магнитное поле. Оно воспринимается двумя носовыми (приёмными) катушками, включёнными встречно, в результате чего их разностная ЭДС равна
нулю.

При прохождении торпеды вблизи цели, имеющей своё электромагнитное поле, происходит искажение поля торпеды. ЭДС в приёмных катушках станут разными и появится разностная ЭДС. Усиленное напряжение поступает на исполнительное устройство, подающее питание на запальное устройство торпеды.

На современных торпедах используются комбинированные взрыватели, являющиеся сочетанием контактного с одним из типов неконтактного взрывателя.

2.4. Взаимодействие приборов и систем торпед

при их движении на траектории

2.4.1. Назначение, основные тактико-технические параметры

парогазовых торпед и взаимодействие приборов

и систем при их движении

Парогазовые торпеды предназначены для уничтожения надводных кораблей, транспортов и, реже, ПЛ противника.

Основные тактико-технические параметры парогазовых торпед, получивших наиболее широкое распространение, приведены в табл.2.2.

Таблица 2.2

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

70 или 44

Турбина

Турбина

Турбина

Нет сведений

Зарубежные

Турбина

Поршневой

Открывание запирающего воздушного клапана (см. рис. 2.3) перед выстрелом торпеды;

Выстрел торпеды, сопровождаемый её движением в ТА;

Откидывание курка торпеды (см. рис. 2.3) курковым зацепом в трубе

торпедного аппарата;

Открывание машинного крана;

Подача сжатого воздуха непосредственно на прибор курса и креновыравнивающий прибор для раскручивания роторов гироскопов, а также на воздушный редуктор;

Воздух пониженного давления с редуктора поступает на рулевые машинки, обеспечивающие перекладку рулей и элеронов, и на вытеснение воды и окислителя из резервуаров;

Поступление воды на вытеснение горючего из резервуара;

Подача горючего, окислителя и воды на парогазовый генератор;

Поджигание топлива зажигательным патроном;

Образование парогазовой смеси и подача её на лопатки турбины;

Вращение турбины, а значит, и винтовой торпеды;

Попадание торпеды в воду и начало её движения в ней;

Действие автомата глубины (см. рис. 2.10), прибора курса (см. рис. 2.11), креновыравнивающего прибора и движение торпеды в воде по установленной траектории;

Встречные потоки воды вращают вертушку, которая при проходе торпедой 180…250 м приводит ударный взрыватель в боевое положение. Этим исключается подрыв торпеды на корабле и вблизи его от случайных толчков и ударов;

Через 30…40 с после выстрела торпеды включаются НВ и ССН;

ССН начинает поиск КС, излучая импульсы акустических колебаний;

Обнаружив КС (получив отражённые импульсы) и пройдя его, торпеда поворачивает в сторону цели (сторона поворота введена перед выстрелом);

ССН обеспечивает маневрирование торпеды (см. рис. 2.14);

При прохождении торпеды вблизи цели или при ударе о неё срабатывают соответствующие взрыватели;

Взрыв торпеды.

2.4.2. Назначение, основные тактико-технические параметры электрических торпед и взаимодействие приборов

и систем при их движении

Электрические торпеды предназначены для уничтожения подводных лодок противника.

Основные тактико-технические параметры электрических торпед, получивших наиболее широкое распространение. Приведены в табл. 2.3.

Таблица 2.3

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Зарубежные

сведений

сведений


* СЦАБ - серебряно-цинковая аккумуляторная батарея.

Взаимодействие узлов торпеды осуществляется следующим образом:

Открывание запирающего клапана баллона ВВД торпеды;

Замыкание «+» электрической цепи – перед выстрелом;

Выстрел торпеды, сопровождаемый её движением в ТА (см. рис. 2.5);

Замыкание пускового контактора;

Подача воздуха высокого давления на прибор курса и креновыравнивающий прибор;

Подача редуцированного воздуха в резиновую оболочку для вытеснения из неё электролита в химическую батарею (возможный вариант);

Вращение электродвигателя, а значит и винтов торпеды;

Движение торпеды в воде;

Действие автомата глубины (рис. 2.10), прибора курса (рис. 2.11), креновыравнивающего прибора на установленной траектории движения торпеды;

Через 30…40 с после выстрела торпеды включаются НВ и активный канал ССН;

Поиск цели активным каналом ССН;

Получение отражённых сигналов и наведение на цель;

Периодическое включение пассивного канала для пеленгования шумов цели;

Получение надёжного контакта с целью пассивным каналом, отключение активного канала;

Наведение торпеды на цель пассивным каналом;

В случае потери контакта с целью ССН даёт команду на выполнение вторичного поиска и наведения;

При прохождении торпеды вблизи цели срабатывает НВ;

Взрыв торпеды.

2.4.3. Перспективы развития торпедного оружия

Необходимость совершенствования торпедного оружия вызывается постоянным улучшением тактических параметров кораблей. Так, например, глубина погружения атомных ПЛ достигла 900 м, а их скорость движения 40 узлов.

Можно выделить несколько путей, по которым должно осуществляться совершенствование торпедного оружия (рис. 2.21).

Улучшение тактических параметров торпед


Чтобы торпеда настигла цель, она должна иметь скорость, как минимум, в 1,5 раз больше, чем атакуемый объект (75…80 узлов), дальность хода – более 50 км, глубину погружения не менее 1000 м.

Очевидно, что перечисленные тактические параметры определяются техническими параметрами торпед. Следовательно, в данном случае должны рассматриваться технические решения.

Увеличение скорости торпеды может быть осуществлено за счёт:

Применения более эффективных химических источников питания двигателей электрических торпед (магний-хлор-серебряных, серебряно-алюминиевых, использующих в качестве электролита морскую воду).

Создания парогазовых ЭСУ замкнутого цикла для противолодочных торпед;

Уменьшения лобового сопротивления воды (полировка поверхности корпуса торпеды, сокращение числа ее выступающих частей, подбор соотношения длины к диаметру торпеды), поскольку V Т прямо пропорциональна сопротивлению воды.

Внедрения ракетных и гидрореактивных ЭСУ.

Увеличение дальности хода торпеды ДТ достигается теми же путями, что и увеличение её скорости V Т, ибо ДТ= V Т t, где t – время движения торпеды, определяемое количеством энергокомпонентов ЭСУ.

Увеличение глубины хода торпеды (или глубины выстрела) требует усиления корпуса торпеды. Для этого должны применяться более прочные материалы, например алюминиевые или титановые сплавы.

Повышение вероятности встречи торпеды с целью

Применением в системах управления волоконно-оптических про

водов. Это позволяет обеспечить двухстороннюю связь с торпе-

дой, а значит, увеличить объем информации о местоположении

цели, повысить помехоустойчивость канала связи с торпедой,

уменьшить диаметр провода;

Созданием и применением в ССН электроакустических преобра-

зователей, выполненных в виде антенных решеток, что позволит

улучшить процесс обнаружения и пеленгования торпедой цели;

Применением на борту торпеды высокоинтегральной электронной

вы числительной техники, обеспечивающей более эффективную

работу ССН;

Увеличением радиуса реагирования ССН повышением ее чувст-

вительности;

Снижением влияния средств противодействия путем использо -

вания в торпеде устройств, осуществляющих спектральный

анализ принимаемых сигналов, их классификацию и выявление

ложных целей;

Разработкой ССН на базе инфракрасной техники, не подвержен-

ной воздействию помех;

Снижением уровня собственных шумов торпеды путем совершен-

ствования двигателей (создание бесколлекторных электродвига-

телей переменного тока), механизмов передачи вращения и

винтов торпед.

Повышение вероятности поражения цели

Решение этой проблемы может быть достигнуто:

Подрывом торпеды вблизи наиболее уязвимой части (например,

под килем) цели, что обеспечивается совместной работой

ССН и ЭВМ;

Подрывом торпеды на таком расстоянии от цели, при котором на

блюдается максимальное воздействие ударной волны и расши

рение газового пузыря, возникающего при взрыве;

Созданием боевой части кумулятивного (направленного действия);

Расширением диапазона мощностей ядерной боевой части, что

связано как с объектом поражения, так и с собственным безопас -

ным радиусом. Так, заряд мощностью 0,01 кт должен применяться

на дистанции не менее 350 м, 0,1 кт – не менее 1100 м.

Повышение надежности торпед

Опыт эксплуатации и применения торпедного оружия показывает, что после длительного хранения некоторая часть торпед не способна выполнять возложенные на них функции. Это свидетельствует о необходимости повышения надежности торпед, что достигается:

Повышением уровня интеграции электронной аппаратуры торпе -

ды. Это обеспечивает повышение надежности электронных уст-

ройств в 5 – 6 раз, уменьшает занимаемые объемы, снижает

стоимость аппаратуры;

Созданием торпед модульной конструкции, что позволяет при мо-

дернизации заменять менее надежные узлы на более надежные;

Совершенствованием технологии изготовления приборов, узлов и

систем торпед.

Таблица 2.4

Наименование торпеды

Скорость,

Дальность

двигателя

Энергоноситель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Комбинированная ССН

Комбинированная ССН,

ССН по КС

Поршневой

Унитарный

Комбинированная ССН,

ССН по КС

Нет сведений

Зарубежные

«Барракуда»

Турбина

Окончание табл. 2.4

Некоторые из рассмотренных путей уже нашли свое отражение в ряде торпед, представленных в табл. 2.4.

3. ТАКТИЧЕСКИЕ СВОЙСТВА И ОСНОВЫ БОЕВОГО ПРИМЕНЕНИЯ ТОРПЕДНОГО ОРУЖИЯ

3.1. Тактические свойства торпедного оружия

Тактические свойства любого оружия – это совокупность качеств, характеризующих боевые возможности оружия.

Основными тактическими свойствами торпедного оружия являются:

1. Дальность хода торпеды.

2. Скорость ее хода.

3. Глубина хода или глубина выстрела торпеды.

4. Способность наносить повреждения наиболее уязвимой (подводной) части корабля. Опыт боевого применения показывает, что для уничтожения большого противолодочного корабля требуется 1 – 2 торпеды, крейсера – 3 – 4, авианосца – 5 – 7, подводной лодки – 1 – 2 торпеды.

5. Скрытность действия, что объясняется малой шумностью, бесследностью, большой глубиной хода.

6. Высокая эффективность, обеспечиваемая применением систем телеуправления, что значительно повышает вероятность поражения целей.

7. Возможность уничтожения целей, идущих с любой скоростью, а подводных лодок, идущих и на любой глубине.

8. Высокая готовность к боевому применению.

Однако наряду с положительными свойствами имеются и отрицательные:

1. Относительно большое время воздействия на противника. Так, например, даже при скорости 50 узлов торпеде требуется примерно 15 мин, чтобы достичь цель, находящуюся на расстоянии 23 км. За этот промежуток времени цель имеет возможность осуществить маневрирование, применить средства противодействия (боевые и технические), чтобы уклониться от торпеды.

2. Трудность уничтожения цели на малых и больших дистанциях. На малых – из-за возможности поражения стреляющего корабля, на больших – из-за ограниченности дальности хода торпед.

3.2. Организация и виды подготовки торпедного оружия

к стрельбе

Организация и виды подготовки торпедного оружия к стрельбе определяются «Правилами минной службы» (ПМС).

Подготовка к стрельбе подразделяется:

На предварительную;

Окончательную.

Предварительная подготовка начинается по сигналу: «Корабль к бою и походу приготовить». Заканчивается обязательным выполнением всех регламентированных действий.

Окончательная подготовка начинается с момента обнаружения цели и получения целеуказания. Заканчивается в момент занятия кораблём позиции залпа.

Основные действия, производимые при подготовке к стрельбе, приведены в таблице.

В зависимости от условий стрельбы окончательная подготовка может быть:

Сокращённой;

При малой окончательной подготовке для наведения торпеды учитываются только пеленг на цель и дистанция. Угол упреждения j не рассчитывается (j =0).

При сокращённой окончательной подготовке учитываются пеленг на цель, дистанция и сторона движения цели. При этом угол упреждения j устанавливается равным некоторой постоянной величине (j=const).

При полной окончательной подготовке учитываются координаты и параметры движения цели (КПДЦ). В этом случае определяется текущее значение угла упреждения (jТЕК).

3.3. Способы стрельбы торпедами и их краткая характеристика

Существует ряд способов стрельбы торпедами. Эти способы определяются теми техническими средствами, которыми оснащены торпеды.

При автономной системе управления стрельба возможна:

1. В настоящее место цели (НМЦ), когда угол упреждения j=0 (рис. 3.1, а).

2. В область вероятного местоположения цели (ОВМЦ), когда угол упреждения j=const (рис. 3.1, б).

3. В упреждённое место цели (УМЦ), когда j=jТЕК (рис. 3.1, в).



Во всех представленных случаях траектория движения торпеды является прямолинейной. Наибольшая вероятность встречи торпеды с целью достигается в третьем случае, однако этот способ стрельбы требует максимального времени на подготовку.

При телеуправлении, когда управление движения торпеды корректируется командами с корабля, траектория будет криволинейной. При этом возможно движение:

1) по траектории, обеспечивающей нахождение торпеды на линии торпеда – цель;

2) в упреждённую точку с корректировкой угла упреждения по

мере приближения торпеды к цели.


При самонаведении используется сочетание автономной системы управления с ССН или телеуправления с ССН. Следовательно, до начала реагирования ССН торпеда движется так же, как рассмотрено выше, а затем, используя:


Траекторию догонного типа, когда продолжение оси тор педы всё

время совпадает с направлением на цель (рис. 3.2, а).

Недостатком этого способа является то, что торпеда часть своего

пути проходит в кильватерной струе, что ухудшает условия рабо

ты ССН (кроме ССН по кильватерному следу).

2. Так называемую траекторию коллизионного типа (рис. 3.2, б), когда продольная ось торпеды всё время образует с направлением на цель постоянный угол b. Этот угол для конкретной ССН постоянен или может оптимизироваться бортовой ЭВМ торпеды.

Список литературы

Теоретические основы торпедного оружия/ , . М.: Воениздат, 1969.

Лобашинский. /ДОСААФ. М., 1986.

Забнев оружие. М.: Воениздат, 1984.

Сычёв оружие /ДОСААФ. М., 1984.

Скоростная торпеда 53-65: история создания // Морской сборник 1998, №5. с. 48-52.

Из истории развития и боевого применения торпедного оружия

1. Общие сведения о торпедном оружии …………………………………… 4

2. Устройство торпед …………………………………………………………… 13

3. Тактические свойства и основы боевого применения

Как сообщила газета "Известия", ВМФ России принял на вооружение новую торпеду "Физик-2". Как сообщается, данная торпеда предназначена для вооружения новейших подводных ракетоносцев проекта 955 "Борей" и многоцелевых атомных подводных лодок нового поколения проекта 885855М "Ясень".

До недавнего времени ситуация с торпедным оружием для ВМФ России была довольно безрадостной - несмотря на наличие современных атомных подводных лодок третьего поколения и появление новейших подводных лодок четвёртого поколения, их боевые возможности существенно ограничивались имеющимся торпедным оружием, существенно уступающим не только новым, но и уже в значительной степени устаревшим образцам зарубежных торпед. Причём не только американских и европейских, но и даже китайских.

Основной задачей советского подводного флота была борьба с надводными кораблями вероятного противника, в первую очередь с американскими конвоями, которые в случае перерастания Холодной войны в "горячую" должны были доставлять в Европу американские войска, вооружение и военную технику, различные припасы и средства материально-технического обеспечения. Наиболее совершенными в советском подводном флоте были "тепловые" торпеды 53-65К и 65-76 , предназначенные для поражения кораблей - они имели для своего времени высокие скоростные характеристики и дальность хода, а также уникальную систему лоцирования кильватерного следа, позволявшую "улавливать" кильватерный след вражеского корабля и следовать вдоль него до момента попадания в цель. При этом они обеспечивали полную свободу манёвра для подводной лодки-носителя после пуска. Особенно эффективной была монструозная торпеда 65-76 калибром 650 миллиметров. Она имела огромную дальность хода - 100 километров при скорости 35 узлов и 50 километров при скорости в 50 узлов, а мощнейшей 765-кг боевой части хватало, что бы нанести тяжёлые повреждения даже авианосцу (для потопления авианосца требовалось всего несколько торпед) и гарантированно потопить одной торпедой корабль любого другого класса.

Однако появление в 1970-х появились так называемые универсальные торпеды - они одинаково эффективно могли применяться как против надводных кораблей, так и против подводных лодок. Появилась и новая система наведения торпед - телеуправление. При данном способе наведения торпеды команды управления на неё передаются при помощи разматываемого провода, что позволяет легко "парировать" манёвры цели и оптимизировать траекторию движения торпеды, что в свою очередь позволяет расширить эффективную дальность применения торпеды. Однако в области создании универсальных телеуправляемых торпед в Советском Союзе не удалось добиться никаких существенных успехов, более того, советские универсальные торпеды уже тогда существенно уступали своим зарубежным аналогам. Во-первых, все советские универсальные торпеды были электрическими, т.е. приводимые в движение электроэнергией от размещённых на борту аккумуляторов. Они более просты в эксплуатации, имеют меньшую шумность при движении и не оставляют демаскирующего следа на поверхности, но в то же время по дальности и скорости хода очень существенно проигрывают парогазовым или т.н. "тепловым" торпедам. Во-вторых, высочайший уровень автоматизации советских подводных лодок, включая систему автоматического заряжания торпедных аппаратов, накладывал конструктивные ограничения на торпеду и не позволил реализовать т.н. шланговую систему телеуправления, когда катушка с кабелем телеуправления находится в торпедном аппарате. Вместо этого пришлось использовать буксируемую катушку, что резко ограничивает возможности торпеды. Если шланговая система телеуправления позволяет свободно маневрировать подлодке после пуска торпеды, то буксируемая манёвры после пуска крайне ограничивает - в таком случае гарантированно порвёт кабель телеуправления, более того, имеется и высокая вероятность его обрыва от набегающего потока воды. Буксируемая катушка также не позволяет осуществлять залповую торпедную стрельбу.

В конце 1980-х годов были начаты работы по созданию новых торпед, но из-за распада Советского Союза они были продолжены лишь в новом тысячелетии. В результате, российские подводные лодки остались с малоэффективными торпедами. Основная универсальная торпеда УСЭТ-80 имела совершенно неудовлетворительные характеристики, а имевшиеся противолодочные торпеды СЭТ-65, имевшие неплохие характеристики в момент принятия их на вооружение в 1965 году, уже морально устарели. В начале 21 века была снята с вооружения торпеда 65-76, которая в 2000 году стала причиной потрясшей всю страну катастрофы подводной лодки "Курск". Российские многоцелевые подводные лодки лишились своей "дальней руки" и самой эффективной торпеды для борьбы с надводными кораблями. Таким образом, к началу текущего десятилетия ситуация с торпедным оружием подводных лодок была совершенно удручающей - они имели крайне слабые возможности в дуэльной ситуации с вражескими подводными лодками и ограниченные возможности по поражению надводных целей. Впрочем последнюю проблемы удалось частично преодолеть путём оснащение с 2011 года подводных лодок модернизированными торпедами 53-65К, которые возможно получили новую систему самонаведения и были обеспечены более высокие характеристики дальности и скорости хода. Тем не менее, возможности российских торпед существенно уступали современным модификациям основной американской универсальной торпеды Mk-48. Флоту, очевидно, требовались новые универсальные торпеды, отвечающие современным требованиям.

В 2003 году на Международном Военно-Морском Салоне была представлена новая торпеда УГСТ (Универсальная Глубоководная Самонаводящаяся Торпеда). Для ВМФ России эта торпеда получила название "Физик". По имеющимся данным, с 2008 года на заводе "Дагдизель" велось производство ограниченных партий этих торпед для проведения испытаний на новейших подводных лодках проектов 955 и 885. С 2015 года начато серийное производство данных торпед и оснащение ими новейших подводных лодок, которые до этого пришлось вооружить устаревшими торпедами. К примеру, подводная лодка "Северодвинск", вступившая в состав флота в 2014 году изначально было вооружена морально устаревшими торпедами УСЭТ-80. Как сообщается в открытых источниках, по мере увеличения количества произведённых новых торпед, ими будут вооружаться и более старые подводные лодки.

В 2016 году сообщалось, что на озере Иссык-Куль велись испытания новой торпеды "Футляр" и что она должна была быть принята на вооружение в 2017 году, после чего производство торпед "Физик" будет свёрнуто и вместо них флота начнёт получать уже другие, более совершенные торпеды. Однако 12 июля 2017 года газета "Известия" и ряд российских информационных агентств сообщили о том, что на вооружение ВМФ России принята новая торпеда "Физик-2". На данный момент совершенно неясно, принята ли на вооружение торпеда, которую называли "Футляр" или торпеда "Футляр" - принципиально новая торпеда. В пользу первой версии может свидетельствовать то, что как сообщалось в прошлом году, торпеда "Футляр" представляет собой дальнейшее развитие торпеды "Физик". Тоже самое говорится и о торпеде "Физик-2".

Торпеда "Физик" имеет дальность хода в 50 км при скорости 30 узлов и 40 километров при скорости в 50 узлов. Торпеда "Физик-2", как сообщается, имеет увеличенную до 60 узлов (около 110 кмч) максимальную скорость за счёт нового турбинного двигателя 19ДТ мощностью 800 кВт. Торпеда "Физик" имеет активно-пассивную систему самонаведения и систему телеуправления. Система самонаведения торпеды при стрельбе по надводным целям, обеспечивает обнаружение кильватерного следа вражеского корабля на расстоянии 2,5 километров и наведение на цель при помощи лоцирования кильватерного следа. По всей видимости, на торпеде установлена система лоцирования кильватерного следа нового поколения, маловосприимчивая к средствам гидроакустического противодействия. Для стрельбы по подводным лодкам система самонаведения имеет активные гидролокаторы, способные "захватить" подлодку противника на расстоянии до 1200 метров. Вероятно, новейшая торпеда "Физик-2" имеет ещё более совершенную систему самонаведения. Также представляется вполне вероятным, что торпеда получила шланговую катушку вместо буксируемой. Как сообщается, общие боевые возможности данной торпеды сопоставимы с возможностями последних модификаций американской торпеды Mk-48.

Таким образом, ситуацию с "торпедным кризисом" в ВМФ России удалось переломить и возможно в ближайшие годы удастся оснастить все российские подводные лодки новыми универсальными высокоэффективными торпедами, которые существенно расширят потенциал российского подводного флота.

Павел Румянцев

Торпеда (от лат. torpedo narke - электрический скат , сокращённо лат. torpedo ) - самодвижущееся устройство, содержащее взрывчатый заряд и служащее для уничтожения надводных и подводных целей. Появление торпедного оружия в XIX веке коренным образом изменила тактику ведения боевых действий на море и послужило толчком для разработки новых типов кораблей , несущих торпеды в качестве главного вооружения .

Торпеды различных типов. Военный музей на батарее Безымянной, Владивосток.

История создания

Иллюстрация из книги Джованни де ла Фонтана

Как и множество других изобретений, изобретение торпеды имеет сразу несколько отправных точек. Впервые идея использовать специальные снаряды для уничтожения вражеских кораблей описана в книге итальянского инженера Джованни де ла Фонтана (итал. Giovanni de la Fontana ) Bellicorum instrumentorum liber, cum figuris et fictitys litoris conscriptus (рус. «Иллюстрированная и зашифрованная книга инструментов войны» или иначе «Книга о военных принадлежностях» ). В книге приведены изображения различных устройств военного назначения, передвигающихся по земле, воде и воздуху и приводимых в движение за счет реактивной энергии пороховых газов.

Следующим событием, предопределившем появление торпеды, стало доказательство Дэвидом Бушнеллом (англ. David Bushnell ) возможности горения пороха под водой. Позже Бушнелл попытался создать первую морскую мину, оснащенную изобретенным им же часовым взрывным механизмом, но попытка ее боевого применения (как и изобретенной Бушнеллом подводной лодки "Черепаха") оказалась безуспешной.
Очередной шаг по пути к созданию торпед был сделан Робертом Фултоном(англ. Robert Fulton ), создателем одного из первых пароходов. В 1797 году он предложил англичанам использовать дрейфующие мины, оснащенные часовым взрывным механизмом и впервые использовал слово торпе́до для описания устройства, которое должно было взрываться под днищем и таким образом уничтожать вражеские корабли. Это слово было использовано из за способности электрических скатов(лат. torpedo narke ) оставаться незамеченными, а затем стремительным броском парализовать свою жертву.

Шестовая мина

Изобретение Фултона не являлось торпедой в современной понимании этого слова, а являлось заградительной миной . Такие мины широко использовались российским флотом во время Крымской войны на Азовском, Черном и Балтийском морях. Но такие мины были оборонительным оружием. Появившиеся чуть позже шестовые мины стали оружием наступательным. Шестовая мина представляла из себя взрывчатку, закрепленную на конце длинного шеста, и скрытно доставлявшаяся с помощью лодки к вражескому кораблю.

Новым этапом стало появление буксируемых мин. Такие мины существовали как в оборонительном, так и в наступательном вариантах. Оборонительная мина Гарвея (англ. Harvey ) буксировалась с помощью длинного троса на расстоянии примерно 100-150 метров от корабля вне кильватерной струи и имела дистанционный взрыватель, который приводился в действие при попытке противника протаранить защищаемый корабль. Наступательный вариант, мина-крылатка Макарова также буксировалась на тросе, но при приближении вражеского корабля буксир шел курсом прямо на противника, в последний момент резко уходил в сторону и отпускал трос, мина же продолжала двигаться по инерции и взрывалась при столкновении с кораблем противника.

Последним шагом на пути к изобретению самодвижущейся торпеды стали наброски неизвестного австро-венгерского офицера, на которых был изображен некий снаряд, буксируемый с берега и начиненный зарядом пироксилина. Наброски попали к капитану Джованни Бьяджо Луппису (рус. Giovanni Biagio Luppis ), который загорелся идеей создать самодвижущийся аналог мины для береговой обороны (англ. coastsaver ), управляемой с берега с помощью тросов. Луппис построил макет такой мины, приводимой в движение пружиной от часового механизма, но наладить управление этим снарядом ему не удалось. В отчаянии Луппис обратился за помощью к англичанину Роберту Уайтхеду (англ. Robert Whitehead ), инженеру судостроительной компании Stabilimeno Technico Fiumano в Фиуме (в настоящее время Риека, Хорватия).

Торпеда Уайтхеда


Уайтхеду удалось решить две проблемы, стоявшие на пути его предшественников. Первая проблема заключалась в простом и надежном двигателе, который сделал бы торпеду автономной. Уайтхед решил установить на свое изобретение пневматический двигатель, работающий на сжатом воздухе и приводящий во вращение винт, установленный в кормовой части. Второй проблемой была заметность торпеды, движущейся по воде. Уайтхед решил сделать торпеду таким образом, чтобы она двигалась на небольшой глубине, но на протяжении длительного времени ему не удавалось добиться стабильности глубины погружения. Торпеды либо всплывали, либо уходили на большую глубину, либо вообще двигались волнами. Решить эту проблему Уайтхеду удалось с помощью простого и эффективного механизма - гидростатического маятника, который управлял рулями глубины. реагируя на дифферент торпеды, механизм отклонял рули глубины в нужную сторону, но при этом не позволял торпеде совершать волнообразные движения. Точность выдерживания глубины была вполне достаточной и составляла ±0,6 м.

Торпеды по странам

Устройство торпед

Торпеда состоит из корпуса обтекаемой формы, в носовой части которого находится боевая часть с взрывателем и зарядом взрывчатого вещества. Для приведения в движение самоходных торпед на них устанавливаются двигатели различных типов: на сжатом воздухе, электрические, реактивные, механические. Для работы двигателя на борту торпеды размещается запас топлива: баллоны со сжатым воздухом, аккумуляторы , баки с топливом. Торпеды, оборудованные устройством автоматического или дистанционного наведения оснащаются приборами управления, сервоприводами и рулевыми механизмами.

Классификация

Типы торпед Кригсмарине

Классификация торпед проводится по нескольким признакам:

  • по назначению: противокорабельные; противолодочные; универсальные, используемые против подводных лодок и надводных кораблей.
  • по типу носителя: корабельные ; лодочные ; авиационные ; универсальные; специальные (боевые части противолодочных ракет и самодвижущихся мин).
  • по типу заряда: учебные, без взрывчатого вещества; с зарядом обычного взрывчатого вещества; с ядерным боеприпасом;
  • по типу взрывателя: контактные; неконтактные; дистанционные; комбинированные.
  • по калибру: малого калибра, до 400 мм; среднего калибра, от 400 до 533 мм включительно; большого калибра, свыше 533 мм.
  • по типу движителя: винтовые ; реактивные; с внешним движителем.
  • по типу двигателя: газовые; парогазовые; электрические; реактивные.
  • по типу управления: неуправляемые; автономно управляемые прямоидущие; автономно управляемые маневрирующие; с дистанционным управлением; с ручным непосредственным управлением; с комбинированным управлением.
  • по типу самонаведения: с активным самонаведением; с пассивным самонаведением; с комбинированным самонаведением.
  • по принципу самонаведения: с магнитным наведением; с электромагнитным наведением; с акустическим наведением; с тепловым наведением; с гидродинамическим наведением; с гидрооптическим наведением; комбинированные.

Устройства пуска

Торпедные двигатели

Газовые и парогазовые торпеды

Двигатель Brotherhood

Первые массовые самоходные торпеды Роберта Уайтхеда использовали поршневой двигатель, работавший на сжатом воздухе. Сжатый до 25 атмосфер воздух из баллона через редуктор, понижающий давление, поступал в простейший поршневой двигатель, который, в свою очередь, приводил во вращение гребной винт торпеды. Двигатель Уайтхеда при 100 об/мин обеспечивал скорость торпеды 6,5 узла при дальности 180 м. Для увеличения скорости и дальности хода требовалось увеличивать давление и объема сжатого воздуха соответственно.

C развитием технологии и ростом давления возникла проблема обмерзания клапанов, регуляторов и двигателя торпед. При расширении газов происходит резкое понижение температуры, которое тем сильнее, чем выше разница давлений. Избежать обмерзания удалось в торпедных двигателях с сухим обогревом, которые появились в 1904 году. В трехцилиндровых двигателях Brotherhood, которыми оснащались первые торпеды Уайтхеда с подогревом, для снижения давления воздуха использовался керосин или спирт. Жидкое топливо впрыскивалось в воздух, поступавший из баллона и поджигалось. За счет сгорания топлива давление повышалось, а температура снижалась. Помимо двигателей с сжиганием топлива, позже появились двигатели, в которых в воздух впрыскивалась вода, благодаря чему менялись физические свойства газовоздушной смеси.

Противолодочная торпеда MU90 с водометным двигателем

Дальнейшее совершенствование было связано с появлением паровоздушных торпед (торпед с влажным обогревом), у которых вода впрыскивалась в камеры сгорания топлива. Благодаря этому можно было обеспечить сжигание большего количества топлива, а также использовать пар, образующийся при испарении воды для подачи в двигатель и увеличения энергетического потенциала торпеды. Такая система охлаждения впервые была использована на торпедах British Royal Gun в 1908 году.

Количество топлива, которое может быть сожжено, ограничено количеством кислорода, которого в воздухе содержится около 21%. Для увеличения количества сжигаемого топлива были разработаны торпеды, у которых вместо воздуха в баллоны закачивался кислород. В Японии в годы Второй мировой войны стояла на вооружении кислородная торпеда 61 см Type 93 , самая мощная, дальнобойная и скоростная торпеда своего времени. Недостатком кислородным торпед была их взрывоопасность. В Германии в годы Второй мировой войны велись эксперименты с созданием бесследных торпед типа G7ut на перекиси водорода и оснащенные двигателем Вальтера. Дальнейшим развитием применения двигателя Вальтера стало создание реактивных и водометных торпед.

Электрические торпеды

Электрическая торпеда МГТ-1

Газовые и парогазовые торпеды имеют ряд недостатков: они оставляют демаскирующий след и имеют сложности с длительным хранением в заряженном состоянии. Этих недостатков лишены торпеды с электроприводом. Впервые электродвигателем оснастил торпеду своей конструкции Джон Эрикссон в 1973 году. Питание электродвигателя осуществлялось по кабелю от внешнего источника тока. Аналогичные конструкции имели торпеды Симса-Эдисона и Нордфельда , причем у последней по проводам также осуществлялось управление рулями торпеды. Первой успешной автономной электрической торпедой, у которой электропитание на двигатель подавалось с бортовых аккумуляторных батарей, стала немецкая G7e , широко распространенная в годы Второй Мировой войны. Но эта торпеда имела и ряд недостатков. Ее свинцово-кислотный аккумулятор был чувствителен к ударам, требовал регулярного обслуживания и подзарядки, а так же подогрева перед использованием. Аналогичную конструкцию имела американская торпеда Mark 18 . Экспериментальная G7ep, ставшая дальнейшим развитием G7e, была лишена этих недостатков так как в ней аккумуляторы были заменены на гальванические элементы. В современных электрических торпедах используются высоконадежные не обслуживаемые литий-ионные или серебряные аккумуляторные батареи.

Торпеды с механическим двигателем

Торпеда Бреннана

Механический двигатель впервые был использован в торпеде Бреннана . Торпеда имела два троса, намотанные на барабаны внутри корпуса торпеды. Береговые паровые лебедки тянули троса, которые крутили барабаны и приводили во вращение гребные винты торпеды. Оператор на берегу контролировал относительные скорости лебедок, благодаря чему мог изменять направление и скорость движения торпеды. Такие системы были использованы для береговой обороны в Великобритании в период с 1887 по 1903 годы.
В США в конце XIX века на вооружении состояла торпеда Хауэлла , которая приводилась в движение за счет энергии раскручиваемого перед пуском маховика. Хауэлл также впервые использовал гироскопический эффект для управления курсом движения торпеды.

Торпеды с реактивным двигателем

Носовая часть торпеды М-5 комплекса Шквал

Попытки использовать реактивный двигатель в торпедах предпринимались еще во второй половине XIX века. После окончания Второй мировой войны был предпринят ряд попыток создания ракето-торпед, которые являлись комбинацией ракеты и торпеды. После запуска в воздух ракето-торпеда использует реактивный двигатель, выводящий головную часть - торпеду к цели, после падения в воду включается обычный торпедный двигатель и дальнейшее движение осуществляется уже в режиме обычной торпеды. Такое устройство имели ракето-торпеды воздушного базирования Fairchild AUM-N-2 Petrel и корабельные противолодочные RUR-5 ASROC , Grebe и RUM-139 VLA. В них использовались стандартные торпеды, совмещенные с ракетным носителем. В комплексе RUR-4 Weapon Alpha использовалась глубинная бомба, оснащенная ракетным ускорителем. В СССР на вооружении стояли авиационные ракето-торпеды РАТ-52 . В 1977 в СССР был принят на вооружение комплекс Шквал , оснащенный торпедой М-5. Эта торпеда имеет реактивный двигатель, работающий на гидрореагирующем твёрдом топливе. В 2005 году о создании аналогичной суперкавитирущей торпеды сообщила немецкая компания Diehl BGT Defence, а в США ведутся разработки торпеды HSUW. Особенностью реактивных торпед является их скорость, которая превышает 200 узлов и достигается благодаря движению торпеды в суперкавитирующей полости пузырьков газа, благодаря чему снижается сопротивление воды.

Кроме реактивных двигателей, в настоящее время используются также нестандартные торпедные двигатели от газовых турбин до двигателей на однокомпонентном топливе, например, на гексафториде серы, распыляемого над блоком твердого лития.

Приборы маневрирования и управления

Маятниковый гидростат
1. Ось маятника.
2. Руль глубины.
3. Маятник.
4. Диск гидростата.

Уже при первых экспериментах с торпедами стало ясно, что во время движения торпеда постоянно отклоняется от изначально заданного курса и глубины хода. Некоторые образцы торпед получили систему дистанционного управления, которая позволяла вручную задавать глубину хода и курс движения. Роберт Уайтхед на торпеды собственной конструкции установил специальный прибор - гидростат . Он состоял из цилиндра с подвижным диском и пружиной и размещался в торпеде так, что диск воспринимал давление воды. При изменении глубины хода торпеды диск перемещался вертикально и с помощью тяг и вакуумно-воздушного сервопривода управлял рулями глубины. Гидростат имеет значительное запаздывание срабатывания по времени, поэтому при его использовании торпеда постоянно меняла глубину хода. Для стабилизации работы гидростата Уайтхед использовал маятник, который был соединен с вертикальными рулями таким образом, чтобы ускорить работу гидростата.
Пока торпеды имели ограниченную дальность хода, мер по выдерживанию курса не требовалось. С увеличением дальности торпеды стали значительно отклоняться от курса, что потребовало использовать специальные меры и управлять вертикальными рулями. Наиболее эффективным прибором стал прибор Обри, который представлял из себя гироскоп, который при наклоне любой из его осей стремится занять первоначальное положение. С помощью тяг возвратное усилие гироскопа передавалось на вертикальные рули, благодаря чему торпеда выдерживала первоначально заданный курс с достаточно высокой точностью. Гироскоп раскручивался в момент выстрела с помощью пружины или пневматической турбины. При установке гироскопа на угол, не совпадающий с осью пуска, можно было добиться движения торпеды под углом к направлению выстрела.

Торпеды, оборудованные гидростатическим механизмом и гироскопом, в годы Второй мировой войны стали оборудоваться механизмом циркуляции . После пуска такая торпеда могла двигаться по любой заранее запрограммированной траектории. В Германии такие системы наведения получили название FaT (Flachenabsuchender Torpedo, горизонтально маневрирующая торпеда) и LuT - (Lagenuabhangiger Torpedo, торпеда с автономным управлением). Системы маневрирования позволяли задавать сложные траектории движения, благодаря чему повышалась безопасность стреляющего корабля и повышалась эффективность стрельбы. Циркулирующие торпеды были наиболее эффективны при атаке конвоев и внутренних акваторий портов, то есть при высоком скоплении кораблей противника.

Наведение и управление торпедами при стрельбе

Прибор управления торпедной стрельбой

Торпеды могут иметь различные варианты наведения и управления. Наибольшее распространение сначала имели неуправляемые торпеды, которые, подобно артиллерийскому снаряду, после пуска не оборудовались устройствами изменения курса. Существовали также торпеды, управляемые дистанционно по проводам и человекоуправляемые торпеды, управлявшиеся пилотом. Позже появились торпеды с системами самонаведения, которые самостоятельно наводились на цель используя различные физические поля: электромагнитное, акустическое, оптическое, а так же по кильватерному следу . Существуют также торпеды с дистанционным управлением по радиоканалу и использующие комбинацию различных типов наведения.

Торпедный треугольник

Торпеды Бреннана и некоторые другие типы ранних торпед имели дистанционное управление, в то время как наиболее распространенные торпеды Уайтхеда и их дальнейшие модификации требовали лишь первоначального наведения. При этом было необходимо учесть целый ряд параметров, влияющих на шансы поражения цели. С ростом дальности хода торпед решение задачи их наведения становилась все более сложной. Для наведения использовались специальные таблицы и приборы, с помощью которых рассчитывалось упреждение пуска в зависимости от взаимных курсов стреляющего корабля и цели, их скоростей, дистанции до цели, погодных условиий и других параметров.

Простейшие, но достаточно точные расчеты координат и параметров движения цели (КПДЦ), выполнялись вручную путем вычисления тригонометрических функций. Упростить расчет можно при использовании навигационного планшета или с помощью директора торпедной стрельбы .
В общем случае решение торпедного треугольника сводится к вычислению угла угла α по известным параметрам скорости цели V Ц , скорости торпеды V Т и курса цели Θ . Фактически за счет влияния различных параметров расчет производился, исходя их большего числа данных.

Панель управления Torpedo Data Computer

К началу Второй мировой войны появились автоматические электромеханические калькуляторы, позволяющие произвести расчет пуска торпед. На флоте США использовали Torpedo Data Computer (TDC) . Это был сложный механический прибор, в который перед пуском торпеды вводились данные о корабле-носителе торпеды (курс и скорость), о параметрах торпеде (тип, глубина, скорость) и данные о цели (курс, скорость, дистанция). По введенным данным TDC производил не только расчет торпедного треугольника, но и в автоматическом режиме производил сопровождение цели. Полученные данные передавались в торпедный отсек, где с помощью механического толкателя устанавливался угол гироскопа. TDC позволял вводить данные во все торпедные аппараты, учитывая их взаимное положение, в том числе для веерного пуска. Так как данные о носителе вводились автоматически с гирокомпаса и питометра , во время атаки подводная лодка могла вести активное маневрирование без необходимости повторных расчетов.

Устройства самонаведения

Значительно упрощают расчеты при стрельбе и повышают эффективность использования торпед использование систем дистанционного управления и самонаведения.
Впервые дистанционное механическое управление было применено на торпедах Бреннана, также управление по проводам использовалось на самых различных типах торпед. Радиоуправление впервые были использовано на торпеде Хаммонда в годы Первой Мировой войны .
Среди систем самонаведения наибольшее распространение сначала получили торпеды с акустическим пассивным самонаведением. Первыми поступили на вооружение в марте 1943 года торпеды G7e/T4 Falke, но массовой стала следующая модификация, G7es Т-5 Zaunkönig . В торпеде был использован метод пассивного наведения, при котором прибор самонаведения сначала анализирует характеристики шума, сравнивая их с характерными образцами, а затем формирует сигналы управления механизмом курсовых рулей, сравнивая уровни сигналов, поступающих на левый и правый акустический приемник. В США в 1941 была разработана торпеда Mark 24 FIDO , но из за отсутствия системы анализа шумов она применялась только для сброса с самолетов, так как могла навестись на стреляющий корабль. Торпеда после сброса начинала движение, описывая циркуляцию до момента приема акустических шумов, после чего происходило наведение на цель.
Активные акустические системы наведения содержат гидролокатор , с помощью которого производится наведение на цель по отраженному от нее акустическому сигналу.
Менее распространены системы, осуществляющие наведение по изменению магнитного поля, создаваемое кораблем.
После окончания Второй Мировой войны торпеды стали оборудоваться устройствами, производящими наведение по кильватерному следу, оставляемого целью.

Боевая часть

Pi 1 (Pi G7H) - взрыватель немецких торпед G7a и G7е

Первые торпеды снабжались боевой частью с зарядом пироксилина и ударным взрывателем. При ударе носовой части торпеды об борт цели, иглы ударника разбивают капсюли-воспламенители, которые, в свою очередь, вызывают подрыв взрывчатого вещества.

Срабатывание ударного взрывателя было возможно только при перпендикулярном попадании торпеды в цель. Если соударение происходило по касательной, ударник не срабатывал и торпеда уходила в сторону. Улучшить характеристики ударного взрывателя пытались с помощью специальных усов, расположенных в носовой части торпеды. Чтобы повысить вероятность подрыва, на торпеды стали устанавливать инерционные взрыватели. Инерционный взрыватель срабатывал от маятника, который при резком изменении скорости или курса торпеды освобождал боек, который, в свою очередь, под действием боевой пружины пробивал капсюли, воспламеняющие заряд взрывчатого вещества.

Головной отсек торпеды УГСТ с антенной системы самонаведения и датчиками неконтактных взрывателей

Позже, для повышения безопасности, взрыватели стали оборудовать предохранительной вертушкой, которая раскручивалась после набора торпедой заданной скорости и разблокировала ударник. Таким образом повышалась безопасность стреляющего корабля.

Кроме механических взрывателей, торпеды оборудовались электрическими взрывателями, подрыв которых происходил за счет разряда конденсатора. Конденсатор зарядался от генератора, ротор которого был связан с вертушкой. Благодаря такой конструкции предохранитель случайного подрыва и взрыватель конструктивно объединялись, что повышало их надежность.
Использование контактных взрывателей не позволяло реализовать весь боевой потенциал торпед. Применение толстой подводной брони и противоторпедных булей позволяло не только снизить урон при взрыве торпеды, но и в некоторых случаях избежать повреждений. Значительно повысить эффективность торпед можно было, обеспечив их подрыв не у борта, а под дном корабля. Это стало возможно с появлением неконтактных взрывателей. Такие взрыватели срабатывают под воздействием изменения магнитного, акустического, гидродинамического или оптического полей.
Неконтактные взрыватели бывают активного и пассивного типов. В первом случае взрыватель содержит излучатель, формирующий вокруг торпеды физическое поле, состояние которого контролируется приемником. В случае изменения параметров поля приемник инициирует подрыв взрывчатого вещества торпеды. Пассивные приборы наведения не содержат излучателей, а отслеживают изменения естественных полей, например магнитного поля Земли.

Средства противодействия

Броненосец Евстафий с противоторпедными сетями.

Появление торпед вызвало необходимость разработки и применения средств противодействия торпедным атакам. Так как первые торпеды имели невысокую скорость, с ними можно было бороться, обстреливая торпеды из стрелкового оружия и пушек малого калибра.

Проектируемые корабли стали оборудоваться специальными системами пассивной защиты. С внешней стороны бортов устанавливались противоторпедные були, которые представляли собой частично заполненные водой узконаправленных спонсоны . При попадании торпеды энергия взрыва поглощалась водой и отражалась от борта, снижая повреждения. После Первой Мировой войны также использовался противоторпедный пояс, который состоял из нескольких легкобронированных отсеков, расположенных напротив ватерлинии . Этот пояс поглощал взрыв торпеды и сводил к минимуму внутренние повреждения корабля. Разновидностью противоторпедного пояса являлась конструктивная подводная защита системы Пульезе, использованная на линкоре Giulio Cesare .

Реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1)

Достаточно эффективными для борьбы с торпедами являлись противоторпедные сети, вывешенные с бортов корабля. Торпеда, попадая в сети, взрывалась на безопасном удалении от корабля либо теряла ход. Сети использовались так же для защиты корабельных стоянок, каналов и портовых акваторий.

Для борьбы с торпедами, использующими различные типы самонаведения, корабли и подводные лодки оборудуются имитаторами и источниками помех, усложняющими работу различных систем управления. Кроме того, принимаются различные меры, снижающие физические поля корабля.
Современные корабли оборудуются активными системами противоторпедной защиты. К таким системам относится, например, реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1), в котором используются три вида боеприпасов (снаряд-отводитель, снаряд заградитель, глубинный снаряд), десятиствольная автоматизированная пусковая установка со следящими приводами наведения, приборов управления стрельбой, устройств заряжания и подачи. (англ.)

Видео


Торпеда Whitehead 1876 года


Торпеда Howell 1898 года

В настоящее время отмечается серьезный рост отставания России в проектировании и разработке торпедного вооружения. Долгое время ситуацию хоть, как-то сглаживало наличие в России принятых на вооружении в 1977 году ракето-торпед «Шквал», с 2005 года подобное вооружение появилось и в Германии. Имеется информация, что немецкие ракето-торпеды «Барракуда» способны развивать большую, чем «Шквал» скорость, но пока российские торпеды подобного типа распространены более широко. В целом же отставание обычных российских торпед от зарубежных аналогов достигает 20-30 лет.

Основным производителем торпед в России является ОАО «Концерн «Морское подводное – Гидроприбор». Данное предприятие в ходе проведения международного военно-морского салона в 2009 году («МВМС-2009») представило на суд публике свои разработки, в частности 533 мм. универсальную телеуправляемую электрическую торпеду ТЭ-2. Данная торпеда предназначена для поражения современных кораблей подводных лодок противника в любом районе Мирового океана.

Торпеда обладает следующими характеристиками: длина с катушкой (без катушки) телеуправления – 8300 (7900) мм, общая масса – 2450 кг., масса боевого заряда – 250 кг. Торпеда способна развивать скорость от 32 до 45 узлов на дальности в 15 и 25 км., соответственно и обладает сроком службы в 10 лет.

Торпеда оснащается акустической системой самонаведения (активная по надводной цели и активно-пассивная по подводной) и неконтактными электромагнитными взрывателями, а также достаточно мощным электродвигателем, обладающим устройством понижения уровня шума.

Торпеда может быть установлена на подводные лодки и корабли различных типов и по желанию заказчика выполнена в трех различных вариантах. Первый ТЭ-2-01 предполагает механический, а второй ТЭ-2-02 электрический ввод данных по обнаруженной цели. Третий вариант торпеды ТЭ-2 имеют меньшие массогабаритные показатели при длине в 6,5 метра и предназначен для использования на подводных лодках натовского образца, к примеру, на немецких подлодках проекта 209.

Торпеда ТЭ-2-02 специально разрабатывалась для вооружения атомных многоцелевых подводных лодок 971 проекта класса «Барс», которые несут ракетно-торпедное вооружение. Есть информация, что подобная АПЛ по контракту была закуплена военно-морским флотом Индии.

Самое печальное в том, что подобная торпеда уже сейчас не отвечает ряду требований предъявляемых к подобному оружию, а также уступает по своим техническим характеристикам иностранным аналогам. Все современные торпеды западного производства и даже новое торпедное оружие китайского производства имеет шланговое телеуправление. На отечественных же торпедах применяется буксируемая катушка – рудимент почти 50-летней давности. Что фактически ставит наши подводные лодки под расстрел противника с гораздо большими эффективными дистанциями по стрельбе. Не одна из представленных на выставке МВМС-2009 отечественных торпед не имела шланговой катушки телеуправления, у всех буксируемые. В свою очередь все современные торпеды оснащаются оптико-волоконной системой наведения, которая размещается на борту подводной лодки, а не на торпеде, что сводит к минимуму помехи от ложных целей.

К примеру, современная американская дистанционно-управляемая торпеда большой дальности Mk-48 разработанная для поражения скоростных подводных и надводных целей способна развивать скорость до 55 и 40 узлов на дистанциях в 38 и 50 километров соответственно (оцените при этом возможности отечественной торпеды ТЭ-2 45 и 32 узла на дальностях 15 и 25 км ). Американская торпеда оборудована системой многократной атаки, которая срабатывает при потере торпедой цели. Торпеда способна самостоятельно обнаружить, осуществить захват и атаковать цель. Электронная начинка торпеды настроена таким образом, что позволяет поражать подводные лодки противника в районе командного поста, расположенного за торпедным отсеком.


Ракето-торпеда "Шквал"


Единственным положительным моментом на данный момент можно считать переход в российском флоте от тепловых к электрическим торпедам и вооружениям на ракетном топливе, которые на порядок устойчивее к всевозможным катаклизмам. Напомним, что АПЛ «Курск» со 118 членами команды на борту, которая погибла в акватории Баренцева моря в августе 2000 года, затонула в результате взрыва тепловой торпеды. Сейчас торпеды того класса, каким был вооружен подводный ракетоносец «Курск» уже сняты с производства и не эксплуатируются.

Наиболее вероятным развитием торпедного оружия в ближайшие годы станет совершенствование так называемых кавитирующих торпед (они же ракето-торпеды). Отличительной их особенностью служит носовой диск диаметром около 10 см., который создает перед торпедой воздушный пузырь, который способствует уменьшению сопротивления воды и позволяет добиваться приемлемой точности, при высокой скорости движения. Примером таких торпед служит отечественная ракета-торпеда «Шквал» диаметра 533 мм., которая способна развивать скорость до 360 км/ч, масса боевой части 210 кг., торпеда не имеет системы самонаведения.

Распространению такого вида торпед препятствует не в последнюю очередь то, что на высоких скоростях их движения трудно расшифровывать гидроакустические сигналы для управления ракето-торпедой. Подобные торпеды вместо винта используют в качестве движителя реактивный двигатель, что в свою очередь затрудняет управление ими, некоторые типы таких торпед способны двигаться только по прямой. Есть сведения, что в настоящее время ведутся работы по созданию новой модели «Шквала», которая получит систему самонаведения и увеличенный вес боевой части.

Парогазовые торпеды, впервые изготовленные во второй половине XIX столетия, стали активно использоваться с появлением подводных лодок. Особенно преуспели в этом германские подводники, потопившие только за 1915 год 317 торговых и военных судов с общим тоннажем 772 тыс. тонн. В межвоенные годы появились усовершенствованные варианты, которые могли применяться самолетами. В годы Второй мировой войны торпедоносцы сыграли огромную роль в противоборстве флотов воюющих сторон.

Современные торпеды оснащены системами самонаведения и могут оснащаться боеголовками с различным зарядом, вплоть до атомного. На них продолжают использоваться парогазовые двигатели, созданные с учетом последних достижений техники.

История создания

Идея атаки вражеских кораблей самодвижущимися снарядами возникла в XV веке. Первым задокументированным фактом стали идеи итальянского инженера да Фонтана. Однако технический уровень того времени не позволял создать рабочих образцов. В XIX веке идею доработал Роберт Фултон, который и ввел в использование термин «торпеда».

В 1865 году проект оружия (или как тогда называли «самодвижущегося торпедо») предложил российский изобретатель И.Ф. Александровский. Торпеда оборудовалась двигателем, работающим на сжатом воздухе.

Для управления по глубине использовались горизонтальные рули. Спустя год аналогичный проект предложил англичанин Роберт Уайтхед, который оказался проворнее российского коллеги и запатентовал свою разработку.

Именно Уайтхед начал использовать гиростат и соосную гребную установку.

Первым государством, взявшим на вооружение торпеду, стала Австро-Венгрия в 1871 году.

В течение последующих 3 лет торпеды поступили в арсеналы многих морских держав, в том числе и России.

Устройство

Торпеда представляет собой самоходный снаряд, движущийся в толще воды под воздействием энергии собственной силовой установки. Все узлы расположены внутри удлиненного стального корпуса цилиндрического сечения.

В головной части корпуса размещен заряд взрывчатого вещества с приборами, обеспечивающими подрыв боеголовки.

В следующем отсеке расположен запас топлива, вид которого зависит от типа установленного ближе к корме двигателя. В хвостовой части установлен гребной винт, рули глубины и направления, которые могут управляться автоматически или дистанционно.


Принцип работы силовой установки парогазовой торпеды основан на использовании энергии парогазовой смеси в поршневой многоцилиндровой машине или турбине. Возможно использование жидкого топлива (в основном керосин, реже спирт), а также твердого (пороховой заряд или любое вещество, выделяющее значительный объем газа при контакте с водой).

При использовании жидкого топлива на борту имеется запас окислителя и воды.

Горение рабочей смеси происходит в специальном генераторе.

Поскольку при сгорании смеси температура достигает 3,5-4,0 тыс. градусов, то имеется риск разрушения корпуса камеры сгорания. Поэтому в камеру подается вода, снижающая температуру горения до 800°C и ниже.

Основным недостатком ранних торпед с парогазовой силовой установкой стал хорошо различимый след выхлопных газов. Это стало причиной появления торпед с электрической установкой. Позднее в качестве окислителя стали использовать чистый кислород или концентрированную перекись водорода. Благодаря этому отработавшие газы полностью растворяются в воде и след от движения практически отсутствует.

При использовании твердого топлива, состоящего из одного или нескольких компонентов, не требуется использование окислителя. Благодаря этому факту снижается вес торпеды, а более интенсивное газообразование твердого топлива обеспечивает увеличение скорости и дальности хода.

В качестве двигателя применяются паротурбинные установки, оснащенные планетарными редукторами для снижения частоты вращения вала гребных винтов.

Принцип работы

На торпедах типа 53-39 перед применением следует вручную установить параметры глубины движения, курса и примерной дистанции до цели. После этого необходимо открыть предохранительный кран, установленный на магистрали подачи сжатого воздуха в камеру сгорания.

При прохождении торпедой трубы пускового аппарата происходит автоматическое открытие главного крана, и начинается подача воздуха непосредственно в камеру.

Одновременно начинается распыл керосина через форсунку и розжиг образовавшейся смеси при помощи электрического прибора. Установленная в камере дополнительная форсунка подает пресную воду из бортового резервуара. Смесь подается в поршневой двигатель, который начинает раскручивать соосные гребные винты.

Например, в германских парогазовых торпедах G7a использован 4-цилиндровый двигатель, оборудованный редуктором для привода соосных винтов, вращающихся в противоположном направлении. Валы полые, установлены один внутри другого. Применение соосных винтов позволяет уравновешивать отклоняющие моменты и поддерживается заданный курс движения.

Часть воздуха при пуске подается на механизм раскрутки гироскопа.

После начала контакта головной части с потоком воды начинается раскрутка крыльчатки предохранителя боевого отделения. Предохранитель оснащен прибором задержки, обеспечивающим взвод ударника в боевое положение через несколько секунд, за которые торпеда отойдет от места пуска на 30-200 м.

Отклонение торпеды от заданного курса корректируется ротором гироскопа, воздействующим на систему тяг, связанную с исполнительной машиной рулей направления. Вместо тяг могут использоваться электрические приводы. Ошибка в глубине хода определяется механизмом, уравновешивающим усилие пружины давлением столба жидкости (гидростат). Механизм связан с исполнительной машинкой руля глубины.


При ударе боевой части о корпус корабля происходит разрушение стержнями ударника капсюлей, которые вызывают детонацию боевой части. Немецкие торпеды G7a поздних серий оснащались дополнительным магнитным детонатором, срабатывавшим при достижении определенной напряженности поля. Аналогичный взрыватель использовался с 1942 года на советских торпедах 53-38У.

Сравнительные характеристики некоторых торпед подводных лодок периода Второй мировой войны приведены ниже.

Параметр G7a 53-39 Mk.15mod 0 Тип 93
Производитель Германия СССР США Япония
Диаметр корпуса, мм 533 533 533 610
Вес заряда, кг 280 317 224 610
Тип ВВ Тротил ТГА Тротил -
Предельная дальность хода, м до 12500 до 10000 до 13700 до 40000
Рабочая глубина, м до 15 до 14 - -
Скорость хода, уз до 44 до 51 до 45 до 50

Наведение на цель

Простейшей методикой наведения является программирование курса движения. Курс учитывает теоретическое прямолинейное смещение цели за время, необходимое для прохождения расстояния между атакующим и атакуемым кораблем.


Заметное изменение скорости хода или курса атакуемым кораблем приводит к прохождению торпеды мимо. Ситуацию отчасти спасает запуск нескольких торпед «веером», что позволяет перекрывать больший диапазон. Но подобная методика не гарантирует поражения цели и ведет к перерасходу боекомплекта.

До Первой мировой войны предпринимались попытки создания торпед с корректировкой курса по радиоканалу, проводам или иным способам, но до серийного производства дело не дошло. Примером может служить торпеда Джона Хаммонда Младшего, которая использовала для самонаведения свет прожектора вражеского корабля.

Для обеспечения наведения в 30-е годы стали разрабатываться автоматические системы.

Первыми стали системы наведения по акустическому шуму, издаваемому гребными винтами атакуемого судна. Проблемой являются малошумные цели, акустический фон от которых может оказаться ниже шума винтов самой торпеды.

Для устранения подобной проблемы создана система наведения по отраженным сигналам от корпуса корабля или создаваемой им кильватерной струи. Для корректировки движения торпеды могут применяться методики телеуправления по проводам.

Боевая часть

Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).

Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.


Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.

Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.

Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.

Применение систем защиты от подводного взрыва привело к появлению взрывателей, обеспечивавших подрыв торпеды вне зоны защиты. После войны появились модели, оснащенные ядерными боеголовками. Первая советская торпеда с ядерной боеголовкой модели 53-58 была испытана осенью 1957 года. В 1973 году ее сменила модель 65-73 калибра 650 мм, способная нести ядерный заряд мощностью 20 кт.

Боевое применение

Первым государством, применившим новое оружие в деле, стала Россия. Торпеды использовались во время русско-турецкой войны 1877-78 года и запускались с катеров. Второй крупной войной с использованием торпедного вооружения стала русско-японская война 1905 года.

В ходе Первой мировой войны оружие использовалось всеми воюющими сторонами не только в морях и океанах, но и на речных коммуникациях. Широкое использование подводных лодок Германией привело к большим потерям торгового флота Антанты и союзников. В ходе Второй мировой войны стали применяться усовершенствованные варианты вооружения, оснащенные электродвигателями, усовершенствованными системами наведения и маневрирования.

Любопытные факты

Были разработаны торпеды больших размеров, предназначенные для доставки крупных боеголовок.

Примером такого вооружения может служить советская торпеда Т-15, имевшая вес около 40 т при диаметре 1500 мм.

Оружие предполагалось использовать для атаки побережья США термоядерными зарядами мощностью 100 мегатонн.

Видео

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то