Сопряжение моста с насыпью чертеж. Инструкция по проектированию и строительству устоев автодорожных мостов и путепроводов, обсыпанных местными грунтами применительно к условиям молдавской сср. Конструирование промежуточных опор балочных мостов

Главным требованием к зоне сопряжения моста и насыпи является «незаметность» для транспорта перехода с одного сооружения на другое. Основным недостатком существующих мостовых сооружений является именно «заметность». Она проявляется в результате двух основных причин: разные просадки этих двух сооружений и разномодульность материалов проезжей части на мосту и на насыпи.

Просадки грунтов насыпи непосредственно перед въездом на мост имеют разную природу и являются весьма распространенным дефектом. Это приводит к дискомфорту движения транспорта, возникновению опасности управления автомобилем и является провоцирующим фактором для развития иных деградационных процессов на контакте между мостом и насыпями.

Исследования Л.И. Иосилевского, И.Н. Матысеки др. показали, что просадки участков перед въездом на мост выявлены примерно в 25% случаев после 5-50 лет их эксплуатации.

На железнодорожном участке Беркакит-Томмот длиной 360 км после 10-15 лет рабочего движения было досыпано 20% грунта и балласта перед сдачей этого участка в эксплуатацию. Наибольшие дефекты имеют участки насыпи, примыкающие к мосту. Это связано в основном с трудностью использования в этой зоне грунтоуплотняющих механизмов. На участке длиной 59 км железнодорожной линии Улак-Эльга после 4 лет безнадзорности (после приостановки строительства) путь в целом выглядел удовлетворительно и мог эксплуатироваться, однако перед мостами имело место зависание рельсов высотой до 1 м над насыпями.

Просадки образуются в виде плавной кривой на длине, приблизительно равной высоте насыпи подхода, но не более 10 м. Максимальное значение просадки находится посередине этой зоны или сдвинуто ближе к устою. Осадки во времени протекают неравномерно. Наиболее интенсивно они происходят в первый год формирования земполотна и составляют 70-80% от конечной величины.

Просадки зависят от многих техногенных и природных воздействий. По длине насыпи они носят стохастический характер. Их основные причины следующие:

  • различная деформативность моста и насыпи: просадки насыпи могут достигать 10-13% от ее высоты, а просадками моста практически можно пренебречь;
  • просадки коренных грунтов, подстилающих насыпь;
  • упругие просадки моста и насыпи от временной нагрузки;
  • наличие динамической составляющей от воздействий экипажей, вызываемой неровностями и просадками проезжей части перед въездом на мост. Этот фактор вызывает на мосту также дефекты в виде поперечных наплывов на асфальтовом покрытии на длине до 5 м от ДШ;
  • смещение верха гибких устоев в сторону пролета до упора шкафных стенок в торцы балок (рис. 5.8). Одной из причин этого дефекта является расширение мерзлого грунта засыпки при его промораживании. Такие деформации невозможны при устройстве засыпки из дренирующих крупнообломочных и гравийно-щебеночных пород, а также крупнофракционных песков. Но они весьма значительны для мелкодисперсных суглинистых и пылеватых грунтов, особенно загрязненных в процессе эксплуатации сооружения.

Рис. 5.8.

Под воздействием многократно повторяющейся нагрузки грунт насыпи возле устоя уплотняется. Усилия передаются на устой и смежные участки подходов. На устоях обсыпного типа грунт выпирает на конусы и обочины, на устоях мостов распорного типа грунтовые массы стремятся переместиться в сторону насыпи (рис. 5.9). Глубина динамических воздействий составляет около 3 м. Горизонтальная силовая схема напряженного состояния в теле насыпи несколько иная, но она также действует на глубине до 3 м.


Рис. 5.9. Напряженное состояние в зоне обсыпного устоя (а) и устоя распорного моста (б)

Более детально эти вопросы изучены применительно к железнодорожным насыпям.

Под движущимися поездами рельсошпальная решетка передает упругие колебания через балластный слой на земляное полотно. Оно воспринимает низкочастотные силовые воздействия от каждой оси (или группы осей) и высокочастотные из-за неровностей на пути и на колесных парах.

Наибольшие воздействия поездная нагрузка оказывает на земляное полотно непосредственно под рельсошпальной решеткой. Максимальные напряжения по вертикали достигают здесь от 0,8 до 1,5 кгс/ см 2 . По другим данным, при нагрузке от маневрового локомотива ТЭМ2 с давлением на ось 210 кН и скорости движения 80 км/ч напряжения в грунте достигают 3 кгс/см 2 , а по горизонтали - в шесть раз меньше.

Напряжения практически ощутимы до глубины 1,5-2 м от уровня основной площадки, а в горизонтальном направлении - до 0,5- 1 м от концов шпал. В соответствии с другими экспериментами на глубине 1 м упругое сжатие грунта составляет 46-48% от максимального значения, на глубине от 1 до 2 м - 24-27%, на глубине до 3 м - до 85%. На глубине 4-6 м динамику можно не учитывать.

Таким образом, и под железнодорожной нагрузкой максимальная ощутимая зона влияния составляет около 3 м (в глубину).

Важной причиной просадок насыпи перед въездом на мост является ее обводненность. Она является сравнительно более высокой на малых мостах, чем на больших мостовых сооружениях. Об источниках избыточного увлажнения подходной насыпи более подробно шла речь в п. 3.2.

С учетом изложенного формируется конструкция сопряжения моста и насыпи.

В случае применения дискретно-консольной плиты проезжей части на балочном мосту, имеющем схему, показанную на рис. 3.1,6, условия проезда непосредственно по мосту и на подходах к нему выравниваются. При этом отпадает необходимость в устройстве ДШ в пределах моста. Температурные сокращения-удлинения концов плиты проезжей части моста можно компенсировать с помощью стыков, вынесенных на подходы. Эти стыки могут быть открытого и закрытого типа.

Стыки открытого типа наиболее целесообразны для железобетонной дискретно-консольной плиты. Они находятся во время эксплуатации в более выгодном положении, чем традиционные ДШ, расположенные над устоями, не испытывают колебаний пролетного строения и угловых поворотов опорного сечения при проходе транспорта по мосту. Стыки просты по своей конструкции. Они полностью исключают возможность попадания на устои и опорные части воды и грязи (в отличие от ДШ). Стыки в любом случае, даже для косых в плане мостов и путепроводов, выполняются по наугольнику. Это упрощает их изготовление и работу во время эксплуатации.

Некоторые варианты конструктивного исполнения стыков на подходах показаны на рис. 5.10. Устройство открытого стыка упрощается в том случае, когда конструкция консольной части плиты проезжей части моста и плиты на подходах одинакова. Такая конструкция плиты на подходах утяжеляет дорожную одежду, однако это оправдано ростом осевых нагрузок автомобильного транспорта и увеличением грузопотоков.

Рис. 5.10. Схемы стыков открытого типа: а, б - одинаковая конструкция плиты проезжей части на мосту и подходах к нему; в - то же, разная конструкция; 1 - консольная часть плиты проезжей части пролетного строения; 2 - дорожная плита на подходной насыпи; 3 - опорная плита; 4- металлический лист; 5 - анкерная арматура; 6- плита на подходной

Стыки закрытого типа устраивают при наличии асфальтобетонного покрытия (рис. 5.11). Стык работает за счет упругости слоев, расположенных под асфальтом либо вместо него. Слои являются эластичными и обладают повышенными характеристиками по деформируемости. Такие стыки могут быть выполнены как при наличии консоли, так и без нее. Максимальные напряжения в асфальтобетоне соответствуют моменту наступления минимальных температур. Для обеспечения низкотемпературной трещиностойкости асфальтобетонного покрытия его не следует укладывать непосредственно на цементо-бетонное основание, это основание рекомендуется выполнять из щебня. Предпочтителен наиболее мощный слой асфальта - до 120 мм. Эффективно его армирование фибрами либо армирующими сетками и тканями из пластмасс и стекловолокна. Целесообразным признано отделение демпфирующего слоя алюминиевой фольгой.

Рис. 5.11. Конструкции сопряжения моста и насыпи: а - опора стоечного типа; б - опора лежневого типа (размеры даны в миллиметрах);

  • 1 - асфальтобетон; 2 - армированный асфальтобетон; 3 - щебеночная засыпка, пропитанная мастикой; 4 - уплотненная каменно-щебеночная смесь; 5 -лежень; 6- покрытие проезжей части моста;
  • 7- пролетное строение

В процессе ремонта, реконструкции или переустройства существующих мостов могут возникнуть различные сложные случаи сопряжения их с насыпями. В определенном смысле речь идет о мостах переходного типа: от типовых к бесшовным. Для таких случаев могут оказаться полезными переходные устройства, показанные на рис 5.12.


Рис. 5.12. а - удлиненный лежень; б - лежень с открылками

За счет упругой работы плиты, защемленной в грунте насыпи, от временной нагрузки с пролета передается меньшее давление на основание под плитой. Как показали расчеты, максимальные прогибы лежня размером в плане 8 х 6 м смещаются в сторону насыпи по мере удлинения лежня.

Вариант лежня с открылками позволяет получить эффект «грунта в обойме». Эта конструкция препятствует сползанию грунта из-под лежня по откосам. Сползание балласта на железнодорожной насыпи (перед мостом) является серьезным и часто встречающимся дефектом. Он приводит к необходимости уширения земполотна у мостов на

1,5 м с каждой стороны на длине до 20 м вместо нормируемых 0,5 м. Переходное устройство «грунт в обойме» позволяет избежать лишних затрат, связанных с уширением насыпи. Упрощается задача организованного отвода воды с проезжей части.

В том случае, когда пролетное строение выполнено в виде плиты высотой до 500-600 мм засыпка за устоем может быть выполнена гравием или щебнем с последующим уплотнением (рис. 5.13).


Рис. 5.13.

Этот способ использован при строительстве ряда однопролетных городских мостов в г. Якутске (рис. 5.14).


Рис. 5.14.

Для пролетов с высотой более 1 м применима конструкция сопряжения, показанная на рис. 5.15 и 5.16.

Рис. 5.15.

Рис. 5.16.

/ - пролетное строение; 2 - лежень; 3 - опорный брус;

4 - переходная плита; 5 - дренаж

Один из вариантов сопряжения моста и насыпи в соответствии проектом Киевского филиала Союздорпроекта (1983 г.) показан на рис. 5.17.


Рис. 5.17. Сопряжение плитами поверхностного типа длиной 8 м: / - лист гофрированного металла; 2 - упругий материал;

3 - плита для скольжения; 4 - сопрягающая плита

Аналогичные варианты показаны на рис. 5.18.


Рис. 5.18.

Варианты сопряжения железнодорожного моста и насыпи показаны на рис 5.19. В одном случае шкафные блоки моста применены в виде переходных плит. В другом случае переходные плиты расположены ступенчато.


Рис. 5.19.

1 - пролетное строение; 2 - оголовок; 3 - упор для пролетного строения и опорный брус для шкафного блока; 4 - шкафной блок; 5 - гибкие стойки; б - лежень; 7- путевой брус; 8- связи пролетного строения с опорами

Ряд вариантов сопряжения моста и насыпи показан на рис. 5.20 и 5.21.


Рис. 5.20.


В последние 15-20 лет заметно возросли скорости движения на автомобильных дорогах, при этом обнаружилось, что наиболее резкие толчки автомобили испытывают на подходах к мостам и над водопропускными трубами, где, как правило, наблюдаются просадки покрытия.

По данным некоторых исследователей, неровности дороги и связанные с ними колебания автомобилей приводят к резкому снижению скорости движения производительности транспортных средств, а также к увеличению себестоимости перевозок. Учитывая, что в среднем на каждый километр дороги приходится мост или труба, значительную долю приведенного ущерба следует отнести за счет деформаций насыпи возле искусственных сооружений.

Просадки у мостов и над трубами небезопасны для транспорта, движущегося с большой скоростью. Поэтому при строительстве мостов и путепроводов на автомобильных дорогах особое внимание должно быть уделено сопряжениям их с насыпью.

В связи с этим Союздорнии последние годы проводил исследования по совершенствованию конструкций сопряжений мостов с насыпью с производством инструментальных обследований существующих сооружений.

Настоящие "Методические рекомендации по устройству сопряжений автодорожных мостов и путепроводов с насыпью" составлены на основе этих исследований, в них приводятся необходимые мероприятия по совершенствованию конструкций сопряжений мостов и путепроводов с насыпью и технология их строительства; причины деформаций дорожных покрытий возле мостов.

Необходимые условия проектирования и строительства сопряжений

1. Главнейшим условием устройства сопряжений моста с насыпью является обеспечение плавности въезда автомобилей с подходов на мост на весь период эксплуатации дороги.

Критерием обеспечения плавности покрытия у моста являются допустимые вертикальные ускорения, которые испытывает автомобиль при проходе неровности. Величины этих ускорений связываются с физиологией человека и с сохранностью перевозимых грузов. Так, при ускорении (0,2 ¸ 0,5) q , где (q - ускорение силы тяжести, равное 9,81 м/сек 2 ) работа в автомобиле невозможна; такое ускорение терпимо в течение одной минуты. Сохранность груза в кузове автомобиля обеспечивается при ускорении, не превышающем (0,6¸ 0,7) q.

При одной и той же неровности величина ускорения будет разной в зависимости от типа автомобиля (легковой, автобус, грузовой), степени его загрузки и скорости движения. Наибольшие ускорения (0,7¸ 1,0) q допускают для грузовых автомобилей, эксплуатируемых в тяжелых дорожных условиях.

2. Неровность характеризуют углами перелома профиля покрытия. В частности, при въезде на мост по наклонной переходной плите автомобиль испытывает толчки на двух переломах профиля: у начала переходной плиты (вогнутый угол перелома) и у конца ее - на устое (выпуклый угол перелома). При скорости движения легкового автомобиля 60 км/час вогнутый угол перелома допустим до 12 ‰; при скорости 100 км/час он не должен превышать 5 ‰.

* Причины деформаций дорожного покрытия возле мостов пояснены в приложении 1 .

3. Для обеспечения плавного въезда автомобиля на мост при устройстве сопряжения его с насыпью необходимо:

а) обеспечить надлежащую плотность грунтов земляного полотна (коэффициент уплотнения грунтов при оптимальной влажности не должен быть менее 0,98-1,0);

б) устроить надежный отвод поверхностных вод с покрытия и из тела земляного полотна, что достигается применением дренирующей засыпки за опорами и в конусах, дренажных слоев под покрытием, устройством бортовых лотков и противофильтрационной защиты покрытия и обочин в пределах сопряжения;

в) выдержать земляное полотно до укладки покрытия не менее года, в течение которого произойдут основные осадки тела и основания насыпи;

г) уложить переходные плиты длиной, достаточной для перекрытия зоны образования местных просадок и для обеспечения плавного сопряжения проезжей части моста с дорожным покрытием.

4. Сопряжения проектируют в соответствии с "Проектом конструкций сопряжений мостов и путепроводов с насыпью", разработанным ГПИ "Союздорпроект" (рабочие чертежи, инв. № 20296-М) и утвержденным Минтрансстроем для опытного применения в 1971-1973 гг. Могут быть также использованы "Нормали сопряжений", разработанные Гипроавтотрансом Министерства строительства и эксплуатации автомобильных дорог РСФСР в 1969 г. (серия 3.503-16).

5. Для проектирования сопряжения необходимы следующие данные:

инженерно-геологический разрез грунтов, слагающих основание насыпи вблизи моста, с физико-механическими характеристиками их (в том числе компрессионные кривые), необходимыми для прогноза осадки основания;

высота насыпи, ширина ее поверху и заложение откосов;

физико-механические характеристики грунтов, применяемых для отсыпки насыпи (в том числе для дренирующей засыпки за опорами и конусов);

конструкция дорожной одежды.

6. Конечную осадку уплотненного земляного полотна принимают в зависимости от грунтов и высоты насыпи по табл. 1 (данные В.Д. Казарновского и Н.И. Вельмакиной), а конечную осадку основания насыпи рассчитывают по известным способам механики грунтов ("Методические указания по проектированию земляного полотна на слабых грунтах", М., Оргтрансстрой, 1968).

Таблица 1

Грунты насыпи

Осадка насыпи, % Н нас при высоте насыпи, м

до 6

до 12

до 24

Глины

0,6-0,8

1,0-1,3

1,9-2,2

Суглинки

Супеси

При расчетах осадок на второй год после отсыпки земляного полотна можно принимать осадку тела насыпи 50 %, а основания - 75 % от полной.

Конструкции сопряжений

7. В конструкцию сопряжений входит часть земляного полотна за береговой опорой моста (отсыпаемая из дренирующего грунта), заканчивающаяся объемлющим опору конусом. Дорожное покрытие в этом месте устраивают в виде переходных плит.

8. В зависимости от материала покрытия подходов применяют три типа переходных плит: при цементобетонном покрытии - поверхностные плиты (рис. 1, а), при асфальтобетонном - полузаглубленные и заглубленные (рис. 1, б, в).

9. Полузаглубленные плиты применяют при асфальтобетонных покрытиях, устраиваемых на жестком и полужестком основаниях. К жесткому относится цементобетонное основание; к полужесткому - основания из каменных материалов, укрепленных цементом, гранулированным доменным шлаком, молотым шлаком, золой уноса и др.

10. Заглубленные плиты укладывают при асфальтобетонных покрытиях, устраиваемых на нежестких основаниях: основания из битумоминеральных материалов, из слабых каменных материалов или щебня из шлака, обработанных жидким битумом, из каменных материалов или щебня из шлака с розливом битума или обработанных битумом методом пропитки.

11. Глубину укладки от поверхности покрытия до верха переходной плиты у опирания ее на шкафную стенку (а) и на конце плиты (б) принимают по табл. 2.

Таблица 2

Рис.1. Конструкция сопряжения моста с насыпью:

а - при цементобетонном покрытии: б и в - при асфальтобетонном покрытии (б - полузаглубленная,. в - заглубленная плита); 1 - промежуточная плита; 2 - переходная плита; 3 - крупно- и среднезернистый песок; 4 - дренирующий грунт, 5 - гравийно-щебеночная подушка; 6-укрепленный грунт или асфальтобетон

12. Длину переходных плит назначают в зависимости от ожидаемых осадок тела и основания земляного полотна.

При недостаточности данных о физико-механических характеристиках грунтов длину плит принимают в зависимости от высоты насыпи и гидрогеологических условий ее основания по табл. 3.

Таблица 3

Высота насыпи, м

Длина плит, м, при грунтах основания насыпи

малосжимаемых

повышенной сжимаемости

Более 8

К малосжимаемым грунтам (см. табл. 3) относятся

пески влажные и насыщенные водой, супеси слабовлажные, суглинки твердопластичные и т.п.; к грунтам повышенной сжимаемости - супеси влажные, суглинки тугопластичные и т.п.

13. Наклон переходных плит (вогнутый угол перелома) после окончания осадок тела и основания насыпи не должен превышать величин, указанных в п. 1.

14. При слабых глинистых грунтах в основании насыпи проезжей части на участке переходных плит и прилегающей части подхода придается строительный подъем по треугольнику. Максимальная ордината строительного подъема располагается над концом переходной плиты (над лежнем) и принимается равной ориентировочно 0,7 % от высоты насыпи. Разгон строительного подъема в сторону от моста осуществляется на длине, равной двум высотам насыпи.

При устройстве поверхностных плит строительный подъем достигается повышенным положением лежня. При полузаглубленных и заглубленных плитах строительный подъем устраивается за счет разной толщины основания покрытия.

15. Переходные плиты устраивают либо сборными, либо сборно-монолитными (поверхностные плиты - только сборно-монолитными); с точки зрения водонепроницаемости покрытия и меньшего веса блоков предпочтительнее применение сборно-монолитных плит.

Наружным концом переходные плиты опираются на лежень - обязательный конструктивный элемент при сборных плитах, укладываемый на тщательно уплотненную гравийно-щебеночную подушку толщиной не менее 0,4 м. Сборные плиты объединяются между собой шпоночным швом с постановкой проволочной спирали. Сверху швы между плитами заполняют битумной мастикой.

16. Поверхности переходных плит, соприкасающиеся с землей, и лежень должны быть покрыты обмазочной гидроизоляцией.

17. Для устройства дренирующей засыпки за опорами и конусов применяют грунты и материалы, не увеличивающиеся в объеме при замерзании: крупный и средний песок, мелкий непылеватый песок (частиц менее 0,1 мм не более 25 %), шлак металлургический. Коэффициент фильтрации дренирующего грунта после уплотнения до коэффициента К = 0,98 должен быть не менее 2 - 3 м/сутки.

18. В пределах переходных плит дорожное покрытие должно быть водонепроницаемым (из двух слоев асфальтобетона общей толщиной не менее 7 см), устраиваемым в соответствии с «Рекомендациями по устройству асфальтобетонных покрытий повышенной водонепроницаемости на мостах» (Союздорнии, 1966).

19. При сборно-монолитных плитах поверхностного типа взамен укладки слоев асфальтобетона для изготовления верхней (монолитной) части плиты используют бетон повышенной плотности с воздухововлекающими, газообразующими или уплотняющими добавками, вводимыми с водой затворения согласно требованиям ВСН 85-68 .

20. Поверхностные воды с покрытия должны быть отведены за пределы сопряжений продольными лотками и сброшены по поперечным лоткам, устраиваемым на откосе насыпи. Для этого насыпь возле мостов на протяжении 20 м уширяют по 0,75 м с каждой стороны.

21. Обочины земляного полотна в пределах переходных плит плюс 4 м укрепляют асфальтобетоном или грунтом, обработанным вяжущим.

22. Объемы работ на устройство одного сопряжения для габарита моста Г-9 при разных типах покрытия и длине переходных плит 4 и 6 м (проект Союздорпроекта 1970 г.) приведены в табл. 4.

Таблица 4

Наименование элементов конструкции

Объем работ при длине плит, м, для типа покрытия

асфальтобетонного

цементобетонного

Сборный или сборно-монолитный железобетон М-300, м 3 .

15,5

24,4

15,5

24,4

Покрытие проезжей части, м

Гравийно-щебеночная подушка под лежень, м 3

Укрепленный грунт обочин, м 3.

Технология работ

23. Строительство береговых опор мостов и путепроводов должно опережать возведение земляного полотна, устройство которого производится без разрыва потока линейных земляных работ. Это требование распространяется и на крупные мосты с длительными сроками производства работ.

24. При свайно-эстакадной конструкции моста рекомендуется предварительно (до забивки свай) отсыпать часть насыпи из дренирующего грунта. Это позволит сократить разрыв между сроком окончания сооружения земляного полотна подходов и сроком строительства моста. Размеры призмы из дренирующего грунта поверху должны быть достаточными для обеспечения фронта работ уплотняющих машин и установки копра.

25. Сопряжения строят в четыре этапа:

а) При свайных опорах (рис. 2) отсыпают призму из дренирующего грунта с послойным уплотнением до коэффициента 0,98-1,0 м и забивают в нее сваи береговой опоры. При высоте насыпи до 3 м высота призмы принимается на 2 м меньше, т.е. Н нас - 2 м, а при высоте насыпи 4 - 6 м высота призмы на 3 м меньше, т.е. Н нас - 3 м.

При высоте насыпи более 6 м высота призмы определяется наличием копрового оборудования - возможностью погружения концов свай на глубину не менее 4 м ниже подошвы призмы.

б) При стоечных опорах (рис. 2, б) и опорах других конструкций возводится фундамент и основная часть стоечной опоры.

II этап. Земляное полотно подходов на всю высоту возводят сразу же после сооружения береговых опор. Вблизи моста земляное полотно и конуса отсыпают из дренирующего грунта с послойным его уплотнением малогабаритными механизмами, в удалении (2 м и более) - местным грунтом, уплотняемым тяжелыми машинами.

Рис. 2. Схемы технологической последовательности работ при устройстве сопряжений:

а - при свайных береговых опорах моста; б - при стоечных опорах;

1-стреловый кран с копровым оборудованием; 2-дренируюшнй грунт; 3-переходная плита; 4-подушка под лежень; 5-временное щебеночное покрытие; 6-зона уплотнения малогабаритными механизмами; 7-то же тяжелыми уплотняющими машинами

Одновременно отсыпают и уплотняют гравийно-щебеночную подушку под лежень переходных плит. Осуществляют систематический контроль за уплотнением, отбором проб и определением влажности и плотности грунта вблизи моста, на конусе и в 50 м от моста и регистрируют в "Журнале контроля уплотнения".

После возведения земляного полотна на всю высоту дальнейшую последовательность работ в III и IV этапах принимают в зависимости от типа покрытия (типа переходных плит).

а) Цементобетонное покрытие - поверхностные плиты. В пределах плит плюс 8 м устраивают временное покрытие из щебня или каменной мелочи, эксплуатируя его в течение года.

б) Асфальтобетонное покрытие - полузаглубленные и заглубленные плиты. Роют траншеи под опорный лежень и котлован под переходные плиты. Укладывают лежень; втрамбовывают в котлован 5-см слой щебня и укладывают переходные плиты. В пределах переходных плит плюс 10 м устраивают временное покрытие из щебня или каменной мелочи, эксплуатируя его в течение года.

а) Цементобетонное покрытие - поверхностные плиты. Удаляют верхний загрязненный слой временного покрытия; при необходимости досыпают основание дорожной одежды до проектной отметки и уплотняют его до К = 0,98¸ 1,0. Роют траншеи под опорный лежень и котлован под переходные плиты. Укладывают лежень; втрамбовывают в котлован 5-см слой щебня, укладывают переходные и промежуточные плиты и постоянное цементобетонное покрытие. Устраивают водоотводные лотки и укрепляют обочины.

б) Асфальтобетонное покрытие - полузаглубленные и заглубленные плиты. Удаляют верхний загрязненный слой временного покрытия; досыпают основание дорожного покрытия до проектной отметки и уплотняют его до К = 0,98¸ 1,0. Укладывают постоянное асфальтобетонное покрытие. Устраивают водоотводные лотки и укрепляют обочины.

Составляют акт на скрытые работы по устройству сопряжений (приложение 2).

26. Строительство береговых опор в прогалах земляного полотна допускается как исключение при надлежащем технико-экономическом обосновании такого решения. При этом размеры прогала в насыпи для обеспечения равномерной осадки основания земляного полотна на подходах к мосту должны быть достаточно большими - не менее двух высот насыпи в каждую сторону от моста. Грунт для засыпки прогала (за пределами дренирующей засыпки) должен быть однородным с грунтом прилегающей насыпи.

27. Грунт дренирующей засыпки и конусов уплотняют при оптимальной влажности послойно до коэффициента уплотнения 0,98¸ 1,0. Толщину слоев принимают в зависимости от используемых механизмов (см. табл. 22 ВСН 97-63). При ручном уплотнении толщина слоев должна быть не более 10-15 см.

При наличии водоемов вблизи трассы целесообразно грунт дренирующей засыпки и конусов перед уплотнением поливать водой, увеличивая влажность грунта против оптимальной на 20 %. При этом можно несколько увеличить толщину уплотняемых слоев.

Систематически контролировать уплотнение путем отбора проб и определения плотности и влажности грунта. Плотность грунта определяют методом кольца с режущим краем, а влажность - методом высушивания до постоянного веса.

Плотность и влажность грунтов с каждой стороны моста определяют на каждом метре высоты отсыпанной насыпи в трех местах: 1) на расстоянии 2-3 м от береговой опоры; 2) на конусе и 3) на расстоянии 50 м от моста. В последнем случае плотность и влажность определяют по двум пробам, взятым на горизонте, примерно равным половине высоты насыпи, и на 0,7 м от ее верха.

28. При устройстве щебеночной подушки под лежень переходных плит и щебеночного основания под плиты особое внимание следует обратить на тщательное уплотнение щебня. Нижний слой щебня толщиной 6 см должен быть втрамбован в грунт. Контроль качества уплотнения щебеночных оснований осуществляют в соответствии с указаниями § 6,6 - 6,9 СНиП III-Д.5-62.

29. Поверхностные переходные плиты укладывают одновременно с устройством покрытия, т.е. через год после возведения земляного полотна.

Полузаглубленные и заглубленные переходные плиты укладывают в один год с возведением земляного полотна, а покрытие в пределах плит - через год. В случае постройки моста в прогале насыпи, возводимой на грунтах повышенной сжимаемости, полузаглубленные и заглубленные плиты укладывают через год после засыпки прогала.

При возведении насыпей на сжимаемых грунтах и необходимости открыть движение до истечения годовой выдержки земляного полотна с разрешения инстанции, утвердившей проект, допускается:

устройство гравийного или щебеночного покрытия на подходах к мосту (на длине не менее двух высот насыпи) с укладкой переходных плит после досыпки и доуплотнения верхней части насыпи через год;

временная укладка переходных плит поверхностного типа с последующей съемкой их через год для досыпки и доуплотнения верхней части насыпи и установкой плит в проектное положение.

В обоих случаях в сметах на строительство объектов должны быть предусмотрены средства на окончание работ по устройству сопряжения моста (путепровода) с насыпью.

30. Отдельные этапы устройства сопряжения моста с насыпью регистрируют в журнале работ. После окончания работ по устройству сопряжений составляют акт на скрытые работы (см. приложение 2), в котором указывают плотность грунтов земляного полотна, тип и конструкцию переходных плит (поверхностные, заглубленные, полузаглубленные, сборные, сборно-монолитные плиты), длину плит и соответствие выполненных работ проекту.

К акту прикладывают выписку из журнала контроля уплотнения грунта и нивелировочные профили в пределах длин переходных плит плюс 10 м (с каждой стороны моста), в отметках, увязанных с репером строительства.

Нивелировочные профили прокладывают по оси каждой из полос движения; отметки (в мм) берут на каждом метре длины профиля.

Конструкция сопряжения моста с насыпью должна быть показана на исполнительном чертеже общего вида моста (путепровода).

После сдачи моста в эксплуатацию строительные, эксплуатационные и проектные организации в течение 3 лет и более ведут наблюдения за состоянием конструкций сопряжений. Материалы наблюдений и предложения по совершенствованию конструкций для обобщения направляются в Союздорнии.

ПРИЛОЖЕНИЯ

Приложение 1

ПРИЧИНЫ ДЕФОРМАЦИЙ ДОРОЖНОГО ПОКРЫТИЯ ВОЗЛЕ МОСТОВ

Земляное полотно автомобильных дорог испытывает деформации, возникающие вследствие уплотнения (консолидации) грунтов как самого тела насыпи, так и ее основания. Этот вид деформаций, проявляющихся на всем протяжении дороги, принято называть общими осадками земляного полотна.

Кроме деформаций консолидации под действием колесной нагрузки, при определенных условиях в верхней части насыпи возле мостов образуются местные просадки (рис. 1).

Рис. 1. Деформация насыпи возле моста: ΔН = Δ h H + Δ h 0 ;

обычно Δ h 0 > Δ h H ,

где ΔН - полная осадка насыпи;

Δ h H и Δ h 0 - осадка тела и основания насыпи;

Δ h М - местная просадка насыпи возле моста

Общие осадки земляного полотна зависят от рода грунтов, слагающих и подстилающих насыпь, высоты насыпи, дорожно-климатической зоны, степени уплотнения грунтов насыпи, интенсивности обращающихся нагрузок и срока эксплуатации дороги. Местные просадки земляного полотна зависят от тех же факторов и, кроме того, от формы продольного профиля и типа покрытия дороги, от типа береговых опор и крутизны откосов конусов * .

В величинах общих осадок земляного полотна превалирующее место занимают осадки основания насыпи. При существующих требованиях к плотности грунтов насыпи осадки ее основания могут превосходить осадки тела более чем в 3 раза. Так, насыпь высотой до 6 м, сложенная из суглинистых грунтов, уплотненных до К = 1,0, даст осадку около 0,5 % от высоты насыпи, в то время как ее основание, сложенное из твердопластичных суглинков, даст осадку 1,5-2 % от высоты насыпи.

Местные просадки земляного полотна возле мостов меньше общих осадок. В их возникновении, помимо срока эксплуатации дороги, существенную роль играет водно-тепловой режим земляного полотна. На длительно эксплуатирующихся дорогах (10-15 лет), когда деформации консолидации грунтов закончены, величины местных просадок составляют от 0,3 % в IV дорожно-климатической зоне до 1 % от Н нас во II зоне. Форма местных просадок близка к синусоиде, а длина их колеблется от 0,5 до 2,0 от Н нас.

На вогнутом профиле дороги, когда сток воды с покрытия направлен к мосту, местные просадки больше, чем на выпуклом. Это свидетельствует о необходимости обязательного водоотвода с покрытия и с обочин дороги возле моста.

* Журавлев М.М. Сопряжение моста с насыпью. - "Автомобильные дороги", 1968, № 11.

Местные просадки зависят от типа береговых опор моста, они больше при массивных устоях с обратными стенками или при устоях со сплошными заборными стенками. Это объясняется нарушением дренирования воды из тела насыпи в сторону отверстия моста, которое создает такие опоры.

Менее устойчивые конуса, с крутым заложением откосов, также увеличивают местные просадки.

Формирование общих и местных деформаций земляного полотна возле мостов связано со временем.

Общие осадки тела и основания земляного полотна происходят неравномерно, они более интенсивны в первые месяцы после возведения насыпи, затем интенсивность их падает. При наиболее часто употребляемых в дорожном строительстве грунтах (пылеватые супеси и суглинки) общие осадки в первый год после возведения насыпи достигают 70-80 % от полной величины осадки. На 2-й год осадка насыпи и основания составляет примерно 15-20 %, а оставшиеся 5-10 % приходятся на 3-5-й год эксплуатации дороги.

На слабых глинистых основаниях, насыщенных водой, осадки насыпи могут растянуться на значительно больший срок, иногда исчисляемый десятилетиями.

В противоположность общим осадкам земляного полотна местные просадки возникают периодически (обычно весной), что объясняется максимальной влажностью оттаивающего грунтового основания покрытия в этот период года.

В результате общих и местных деформаций насыпи, если не принимать необходимых мер, дорожное покрытие возле мостов разрушается, образуя просадки и неровности.

Эксплуатационные организации ликвидируют просадки укладкой дополнительных слоев асфальтобетона. На следующий год или через год просадки возобновляются. По мере ремонта покрытия асфальтобетон погружается в тело земляного полотна. На некоторых длительно эксплуатирующихся дорогах общая толщина асфальтобетона возле мостов достигла 50-100 см (рис. 2) * .

Рис. 2. Местная просадка насыпи возле одного из мостов на дороге Москва-Симферополь:

1-асфальтобетон (за срок эксплуатации 17 лет толщина слоя достигла 50 см); 2-буровые скважины

До настоящего времени сопряжения мостов и путепроводов с насыпью устраивали либо с применением коротких (1,5-2,0 м) переходных плит, либо без переходных плит - с устройством клинообразного утолщения щебеночного основания покрытия. Плиты такой длины недостаточны для перекрытия активной зоны образования местных просадок, а клинообразные утолщения основания покрытия быстро деформируются, образуя перед мостом порожек.

* Журавлев М.М. Исследование причин расстройства сопряжений автодорожных мостов с насыпями. - Сб. "Труды Союздорнии", вып. 42, М., 1970.

Во многих случаях подходы к мостам отсыпаются из местных недренирующих грунтов без надлежащего их уплотнения. Часто нарушается технологическая последовательность строительных работ: земляное полотно возводится с опережением строительства моста, т.е. мост строится в прогале насыпи. Такая последовательность работ вызывает возле моста неравномерные осадки основания земляного полотна.

Грубейшим нарушением технологии работ является устройство переходных плит и покрытия на подходах к мостам сразу после отсыпки насыпи (или засыпки прогала), когда деформации консолидации грунтов наиболее интенсивны. В результате этого переходные плиты своим наружным концом резко опускаются и теряют свое назначение.

Бортовые лотки на обочинах земляного полотна при вогнутом профиле дороги устраиваются лишь в редких случаях. При отсутствии таких лотков поверхностные воды устремляются по покрытию к мосту, увлажняют земляное полотно, размывают его откосы и конуса, чем нарушается устойчивость насыпи возле моста.

Таким образом, почти единственной мерой предупреждения просадок покрытия возле мостов до настоящего времени являлось применение переходных плит длиной 1,5 - 2 м и в последнее время Г-образных плит длиной 3 м X . Последний тип плит, помимо недостаточной длины, дает также значительные раскрытия деформационного шва на береговой опоре.

Отмеченные недостатки конструктивных решений и технологии работ приводят к деформации узла сопряжения моста с насыпью. В особенности деформации покрытия велики у мостов, сопряжения которых выполнены без переходных плит, с устройством лишь щебеночного клина. Например, на подготовленной в 1968 г. к сдаче дороге Тамбов-Первомайский из-за больших деформаций покрытия возле мостов пришлось выставить предупреждающие знаки о неровностях на дороге, а затем производить реконструкцию узлов сопряжений путем укладки переходных плит.

X Исключение составляет применение переходных плит длиной 5,0 м на шести мостах второй очереди строительства Московской кольцевой дороги (1961 г.), что по сравнению с плитами длиной 2 м значительно повысило ровность покрытия.

Приложение 2

на скрытые работы по устройству сопряжений с насыпью моста через реку_____________на км _______пк ________ дороги ______________________

«___»______19 ____ г Поселок___________________________________________________

Мы, нижеподписавшиеся, представители ________________________________ составили настоящий акт в том, что «____»__________с.г. произведено освидетельствование и испытание грунтов земляного полотна на подходах к мосту, в результате установлено следующее:

1. Насыпь подхода со стороны _________________отсыпана в ___________ (месяц) ___________19 ____ г. из грунтов ______________________________. Возле береговых опор часть насыпи отсыпана ____________ 19 ____г. из дренирующего грунта ________________________________(наименование грунта) с коэффициентом фильтрации ______________________ м/сут.

Уплотнение грунтов производилось слоями по ____ см ________________ (наименование механизма) __________________________________.

Коэффициент уплотнения не менее: в расстоянии 2-3 м от береговой опоры ____________; на конусе______________ в расстоянии 50 м от моста ______________ (см. прилагаемую выписку из журнала контроля уплотнения).

2. Насыпь подхода со стороны ________________________________________________

(аналогичный текст, как в п. 1)________________________________________________

Уплотнение щебеночной подушки под лежень и щебеночного основания под переходные плиты осуществлялось _______________________________________(наименование механизма).

На основании произведенного освидетельствования считать полотно подходов к мосту подготовленным для укладки переходных плит.

3. Переходные плиты длиной _______ м поверхностного, полузаглубленного, заглубленного типа (ненужное зачеркнуть), уложены _________________19 __ г.

______________________________________________________________________________

(отразить установку штырей, заделку швов и омоноличивание элементов).

Приложения: 1. Выписка из журнала контроля уплотнения грунта на _______листах.

2. Нивелировочные профили сопряжений на _________ листах.

Приложение 3

При устройстве рекомендуемых типов сопряжений снизится себестоимость перевозок грузов за счет повышения скоростей на подходах к мостам. Годовой выигрыш себестоимости перевозок на один мост ΔЭ 1 , можно определить, используя формулу В.Ф. Бабкова *

где коэффициент K б - отношение скорости на участке снижения к средней скорости автомобиля (V m =50 км/час) принят равным 0,6;

N - средняя интенсивность движения, равная 2000 авт/сутки;

L - длина подходов к мосту, равная 0,3 км;

r - стоимость пробега 1 автомобиля, принятая 0,20 руб/км (при средней грузоподъемности, средних значениях коэффициентов использования грузоподъемности и пробега автомобилей γβq = 2,9 и себестоимости перевозок - 5,3 коп/ткм);

Т раб.= количество рабочих дней автомобиля в году, равное 275.

В связи с ускорением доставки грузов будет получен эффект в сфере народного хозяйства. Этот эффект можно оценить по формуле

Принципы реконструкции дорог. - * Автомобильные дороги", 1969, № 11.

где 0,6 - коэффициент, учитывающий долю товарных грузов и грузов краткосрочного хранения (по А.Б. Меерсону);

Ц - средняя цена 1 т грузовой массы, равная 420 руб;

Q г - годовое количество грузов- Q г =N γβqT раб - подсчитано при ранее принятых значениях;

V m = 50 км/час;

V 0 = 25 км/час;

L = 0,3 км;

Е н - нормативный коэффициент эффективности капиталовложений.

Кроме перечисленного выше, эксплуатационные организации снизят расходы на ежегодный ремонт покрытия возле мостов ΔЭ 3 , которые, по данным обследования Союздорнии, на 1 мост составляют 90 руб/год.

С другой стороны, применение новых сопряжений по сравнению со старыми типами (плиты длиной 2 м) вызовет удорожание строительства (см. таблицу).

Наименование материалов и работ

Объемы работ, м 3 , при сопряжениях

Удорожание работ, тыс. руб. при новых типах, для плит:

старых

новых, для плит

4-м

6-м

4-м

6-м

Железобетон

48,8

Подушка под лежень

Грунт, укрепленный вяжущим

Итого: удорожание, тыс. руб.

Коэффициент эффективности капиталовложений при устройстве рекомендуемых типов сопряжений определяют при возрастании грузооборота на дороге по прямолинейной зависимости Э t = Э 0 (1 + at ) , в которой параметр a = 0,13 принят по статистическим данным; t -рассматриваемый отрезок времени, годы. Расчетный год определения затрат:

где года < Т н = 8,3 года

Приведенные данные свидетельствуют об эффективности применения новых конструкций сопряжения мостов и путепроводов с насыпью.


Переход пути с подходов на мост должен быть нормальным, без впадин и просадок под поездами.

Просадка пути в этих местах наблюдается главным образом при слабых, неутрамбованных насыпях, а также при неудовлетворительных устоях в виде шпальных клеток, ряжей и рам, заложенных на плохо подготовленном основании. Осадке грунта за устоями способствуют, а иногда служат основной причиной, недостаточное заведение устоев в насыпь, отсутствие или неудовлетворительная конструкция закладных щитов, неспланированные крутые и неукреплённые откосы конусов.

Несвоевременное устранение просадок пути отражается не только на безопасности движения проходящего поезда, но является причиной дальнейшего прогрессивного расстройства сопряжения моста с насыпью в связи с увеличением толчков при резких провалах колёсных пар поезда.

Задняя грань устоя, независимо от его конструкции, должна входить в насыпь не менее чем на 0,75 м.

В то же время пролётные строения и опорные брусья, а также насадки или верхний ряд брусьев опоры и подферменные камни для возможности осмотра должны быть обнажены от грунта с устройством закладного щита (фиг. 20). Закладной щит должен быть антисептирован, имея в виду интенсивное его гниение и передачу гнили на соседние деревянные элементы пролётных строений и опор. Стенка закладного щита во избежание просыпания балласта за ним не должна иметь щелей.

При малой длине устоя, не позволяющей заделать его в насыпь, на указанную величину требуется увеличить крутизну откоса конусов путём досыпки (фиг. 21) и более солидного их укрепления, например, мощением в плетнях.

Просадка пути над устоями по мере её образования должна устраняться путём укладки нашпальников толщиной, равной полной величине просадки. При значительной просадке, требующей укладки двух и более шпал или брусьев по высоте, последние должны укладываться вперевязку, аналогично устройству клеток с закреплением брусьев скобами против взаимного перемещения. Просадка пути над земляным полотном устраняется досыпкой балласта, а в зимний период для подъёмки пути применяют в качестве временной меры нашпальники.

При осадке временных устоев, превышающей осадку насыпи за ними, как и при осадке надстроек на подферменных площадках массивных устоев, наблюдается повисание лёгких пакетов на рельсах, представляющее серьёзную опасность для излома рельсов под поездом. Во избежание этого необходимо своевременно устранять не только остаточную, но и упругую осадку конструкций относительно рядом расположенного участка пути на более жёстком основании. Устранение осадок достигается, в частности, путём соответствующей и тщательной подклинки пролётных строений.

В плане переход пути с подходов на мост должен быть прямолинейным. Переходные кривые должны располагаться на удалении не менее 20 м от закладного щита устоя. Если расстояние от круговой кривой до моста недостаточно для укладки нормальной переходной кривой, длина последней сокращается настолько, чтобы сопряжение её с прямолинейной частью пути отстояло от закладного щита устоя не менее чем на 5 м.

Конусы насыпи, выходящие при неизбежности за переднюю грань устоя в русло, во избежание размыва сильным течением должны быть сопряжены с дамбой или при её отсутствии с берегом плавной переходной вставкой с отводом не более 1:10 по горизонтали, Укрепление таких конусов и открсов переходной вставки в пределах возможного затопления с запасом в 1 м должно быть особенно надёжным.

* 400 - для железобетонных элементов промежуточных опор железнодорожных и совмещенных мостов на постоянных водотоках.

** 500 - для блоков облицовки опор больших железнодорожных и совмещенных мостов через реки с ледоходом при толщине льда свыше 1,5 м.

5.3. Сопряжение моста с насыпью. Концевые опоры (устои)

5.3.1. Общие требования к сопряжению моста с насыпью

Сопряжение моста с подходными насыпями осуществляется в пределах копченых участков насыпей - конусов, внутри которых располагаются концевые опоры моста - устои. Главное требование к этому сопряжению - обеспечить плавный въезд па мост за счет плавного изменения жесткости основания ж. д. пути или дорожного покрытия автопроезда. В пределах моста основание пути (слои балласта или железобетонная плита) дает мод нагрузкой незначительные упругие осадки. На насыпи осадки значительно больше. Чтобы в рельсах не возникали большие напряжения или не происходило расстройство дорожного покрытия, необходимо обеспечить плавное увеличение жесткости основания по мере приближения к мосту. Это обеспечивается прежде всего тем, что устой, воспринимая горизонтальное давление насыпи от собственного веса грунта и временной нагрузки на насыпи за устоем, препятствует большим вертикальным перемещениям верха насыпи. Кроме того изменение жесткости обеспечивается укладкой за устоем специальных переходных плит. Насыпь удерживается от сползания в пролет конусом, который сам по себе должен быть устойчивым. Обсыпные устои даже традиционной конструкции (см. рис. 5.1) не могут удержать насыпь от деформаций, а при расчете па устойчивость против глубокого сдвига (см. п. 6.5.2) увеличивают сдвигающую силу в сравнении со стоечными устоями вследствие большего веса конструкции.

Рис. 5.1. Обсыпной устой

При проектировании необсыпного устоя его переднюю грань совмещают с точкой пересечения откоса конуса с поверхностью грунта (точка В на рис. 5.2).

Рис. 5.2. Необсыпной устой

Основные конструктивные требования, к сопряжениям устоев с насыпью и конструкции устоев, предусмотренные СНиП 2.05.03-84, приведены на рис. 5.3.

Рис. 5.3. Сопряжение устоя с насыпью:

Размеры в см. Н - высота насыпи

*при сейсмичности 9 баллов максимальная крутизна откосов 1:1,75

5.3.2. Устройство конусов

Нарушение устойчивости конуса может произойти из-за подмыва его подошвы, из-за уменьшения сил трения между частицами грунта при намокании, при динамических (особенно сейсмических) воздействиях, а также из-за сдвигов в грунте основания конуса под действием сил веса самого конуса и временной нагрузки на насыпи. Необходимая устойчивость конуса обеспечивается заданием его откосам достаточно пологих уклонов (рис. 5.3), отсыпкой конуса насыпи дренирующим грунтом (песок, гравий, в особых случаях - щебень, каменная наброска), а защита от размыва-укреплением откосов.

При высоте насыпи более 12 м предельно допускаемая крутизна откосов должна определяться расчетом конуса па устойчивость против глубокого сдвига (см. п. 6.5.2).

На реках, где осуществляется регулирование пропуска поды под мостом в периоды паводков путем устройства струенаправляющих дамб и других регуляционных сооружений, откосы дамб и пойменных насыпей проектируются с учетом воздействия ледохода, волн, течения воды и требуют усиленного крепления. Это относится и к откосам конусов, подверженным тем же воздействиям. Обычно откосы укрепляют сборными или монолитными железобетонными плитами, реже - каменным мощением или каменной наброской. Верх укрепления насыпей должен быть защищен от разрушения, особенно под действием накатывающихся волн, способных подмыть крепление сверху. С этой целью укрепление поднимается выше уровня наката волн на откос при высоком уровне воды. Кроме высоты наката волн, необходимо учесть высоту подпора воды перед мостом, и предусмотреть запас по высоте не менее 0,5 м. При определении высоты укрепления ориентируются па высокие уровни воды, соответствующие наибольшим паводкам (НУВВ) - для мостов на железных дорогах общей сети и расчетным паводкам (РУВВ) для остальных мостов.

Верхняя часть конусов и откосов насыпей также укрепляется бетоном или камнем (против ветровой эрозии и разрушения атмосферными осадками). Мощность такого укрепления (толщина плит, крупность камня к др.) обычно меньше мощности укрепления нижней части, подвергающейся ледовому и волновому воздействию. Конус обсыпного устоя может выполнять роль струенаправляющего сооружения (конус с уширением). Если же устраивается струенаправляющая дамба, то конус сливается с дамбой, которая как бы служит его основанием. Поэтому на уровне верха укрепления нижней части откоса обычно устраивается берма шириной 2-3 м (в случае устройства струенаправляющей дамбы эта берма совмещается с горизонтальном площадкой по верху дамбы). При вариантном проектировании уклон откоса конуса ниже бермы может быть назначен в пределах от 1:2 до 1:3, а в случае устройства дамбы уклон ее откоса со стороны русла реки - 1:3 или еще более пологим. Выше берм уклон откоса конуса назначают не круче 1:1,5 (рис. 5.4).

Рис. 5.4. Сопряжение большого моста с насыпью

Укрепление откоса по подошве (в уровне естественной поверхности грунта) упирают в своего рода фундамент (упор) в виде бетонного блока или рисбермы трапецеидального сечения из камня. Укрепляется часто также и некоторая полоса горизонтальной поверхности основания вдоль подошвы откоса.

Конусы, пойменные насыпи, регуляционные сооружения, как правило, располагают за пределами меженного русла реки (в пределах пойм). Это, в частности, является одним из условий (хотя обычно и не главным), определяющих минимальную величину отверстия моста и его расположение относительно меженного русла реки *.

* Исключением являются случаи, когда в процессе строительства моста проводится регулирование русла реки (спрямление русла, устройство набережных), т. е. когда, кроме строительства моста, проводятся еще и специальные гидротехнические работы.

Для сейсмических районов конусы насыпей у устоев проектируются в соответствии со СНиП II-7-81.

5.4. Конструирование устоев

5.4.1. Оголовки устоев

Подферменник (оголовок) устоя служит для распределения нагрузки, воспринимаемой от пролетного строения, на несущую конструкцию. Для массивных бетонных устоев он устраивается железобетонным (обычно армируется двумя арматурными сетками, расположенными поверху и понизу плиты) и должен иметь толщину не менее 40 см. Поверх армированной части плиты укладывается монолитно связанный с ней бетон сливов, имеющий наклонную верхнюю поверхность для стока воды. Уклоны не должны быть положе 1:10.

Опорные части устанавливаются на подферменные площадки, армированные сетками по расчету на местное смятие. Подферменные площадки также монолитно связаны с плитой оголовка и должны возвышаться над наиболее высокой его частью не менее, чем на 15 см. Размеры оголовков и подферменных площадок определяются размерами нижних плит опорных частей (см. рис. 5.3). Величины «а» и «в» принимаются не менее значений, приведенных в табл. 5.2 и 5.3 соответственно.

Таблица 5.2

Минимальные значения расстояния от грани подферменной площадки до грани оголовка опоры вдоль моста

Длина примыкающего пролетного строении l , м

min а , см

не нормируется

Примечание : при сейсмичности 9 баллов а min = 0,005 l .

Таблица 5.3

Минимальные значения расстояния от грани подферменной площадки до грани оголовка опоры поперек моста

Тип пролетного строения

Тип опорной части

min b , см

ребристое

плоские тангенциальные

катковые, секторные

Расстояние от оси опирания пролетного строения до шкафной стенки определяется по формуле

где L п - полная длина пролетного строения в уровне проезжен части (для сквозных ферм - по продольным балкам);

L р - расчетный пролет;

Δс - зазор, принимаемый:

асм - при установке на устой неподвижной опорной части,

б) 5 + Δl т + Δl в - при установке на устой подвижной опорной части (Δl т - температурное удлинение пролетного строения; Δl в - удлинение нижнего пояса от временной нагрузки),

в) по расчету - при установке пролетных строений на резиновые опорные части; при гибких опорах и температурно-неразрезных пролетных строениях.

5.4.2. Обсыпные устои при высоких насыпях

При высоких насыпях устои пока строится по индивидуальным проектам с применением как сборных, так и монолитных конструкций.

Рис. 5.5. Пример стоечного устоя автодорожного моста:

1 - заранее отсыпанная часть насини

На рис. 5.1 показан пример обсыпного устоя моста под железную дорогу - массивной конструкции. Часть тела устоя, расположенная под подферменником, проектируется по размерам подферменника. Остальная часть может быть более узкой. Кроме того, для ее облегчения возможно устройство проемов (ниш). Фундамент смещен в сторону пролета в соответствии с положением равнодействующей нагрузок. Если фундамент обсыпного устоя проектируется свайным, то нет необходимости заглублять плиту ростверка ниже поверхности грунта: целесообразно размещение плиты выше естественной поверхности грунта с погружением свай сквозь отсыпанную или намытую часть насыпи. Это позволяет вести работы без устройства котлована, без водоотлива, что существенно упрощает и удешевляет сооружение устоя.

Примеры сборных устоев см. рис. 5.5 и п. 3. Если судоходный пролет моста с пролетным строением с ездой понизу примыкает к берегу, то может оказаться более экономичным устройство перед устоем переходного пролета, перекрытого пролетным строением с ездой поверху, хотя при этом требуется дополнительная промежуточная опора. С целью предотвращения осадок проезжей части за задней гранью устоя, под полотном дороги укладывается переходная железобетонная плита, которая должна плотно лежать на песчаном или гравийно-щебеночном основании. Одним краем плита опирается на устой а другим - на железобетонный лежень, опирающийся в свою очередь на гравийно-песчаную подушку. Плита укладывается с небольшим уклоном. Переходная плита частично разгружает устой от горизонтального давления грунта насыпи, вызванного временной нагрузкой. Длину плиты принимают обычно 4-8 м.

5.4.3. Необсыпные устои

Необсыпные устои применяют обычно при высотах насыпи до 6-8 м, преимущественно в городских условиях, чаше - в сочетании с подпорными стенами.

Устои с обратными стенками (рис. 5.6) имеет в плане П-образную форму. Внутреннее пространство устоя заполняется дренирующим грунтом. Ширину устоя поперек оси моста обычно назначают равной расстоянию между перилами на проезжей части моста. Толщину бетонных боковых (обратных) стенок назначают поверху около 0,5 м и увеличивают к низу за счет придания внутренним граням стенок уклона порядка 4:1. Толщину железобетонных стенок назначают по расчету. Стенки рассчитывают па действие горизонтального давления грунта засыпки устоя от его собственного веса и от временной нагрузки. Чтобы исключить возможность распирания устоя силами морозного пучении грунта, необходимо обеспечить отвод воды, проникающей внутрь устоя. Для этого внизу засыпки устраивается дренаж.

Деформации засыпки под действием временной нагрузки стеснены передней и обратными стенками, благодаря чему обеспечивается достаточно плавное возрастание жесткости основания пути при въезде на мост.

При небольшой ширине эффективнее оказывается конструкция монолитного необсыпного устоя с балластным корытом (рис. 5.2). Тело устоя устраивается узким, а края балластной призмы и тротуары располагают на железобетонных консолях. Глубина балластного корыта увеличивается по направлению к задней грани устоя, чем обеспечивается плавность въезда на мост («мягкий въезд»).

Рис. 5.6. Необсыпный устой с обратными стенками

Часть устоя, расположенная под балластным корытом, может быть значительно более узкой (до 2,5 м) и дополнительно еще облегчается путем устройства ниш по бокам кладки. В этом случае в среднем (по высоте устоя) сечении кладка устоя имеет Т-образную или двутавровую форму.

5.5. Конструирование промежуточных опор балочных мостов

5.5.1. Оголовки промежуточных опор

Принципы устройства оголовков показаны на рис. 5.7, размеры «а» и «в» - в табл. 5.2 и 5.3. Для массивных опор форма оголовка, как правило, соответствует форме поперечного сечения верхней части опоры. К оголовкам промежуточных опор предъявляются те же конструктивные требования, что и к оголовкам устоев (см. п. 5.4.1). Расстояние «с» между осями опирания соседних пролетных строений определяется по формуле:

с = а 1 + а 2 + Δс ,

L п1, L п2 - полные длины пролетных строении в уровне проезжей части (для сквозных ферм - по продольным балкам);

Рис. 5.7. Оголовки промежуточных опор:

а - обтекаемой формы; б - необтекаемой формы

L п1, L п2 - расчетные пролеты; Δс - зазор, принимаемый:

а) 5-6 см - при опирании па опору разрезных пролетных строений через разноименные опорные части при длинах пролетных строений до 25 м;

б) 5 + Δl t + Δl в - то же при длинах пролетных строении более 25 м (Δl t - температурное удлинение пролетного строения; Δl в - удлинение нижнего пояса от временной нагрузки);

в) по расчету - при установке пролетных строении па резиновые опорные части; при использовании температурно-неразрезных пролетных строений.

При больших пролетах для удобства производства работ в период эксплуатации значение «с» увеличивается на 10-30 см. При определении величины Δl t учитывается температура замыкания (установки на опорные части); при определении величины Δl в учитываются условия установки нижней плиты подвижной опорной части и катка (сектора) - как правило, с учетом того, что при половинной временной нагрузке вертикальные оси верхнего балансира и нижней (опорной) плиты oпopнoй части совпадали.

Если на опору опираются разнотипные пролетные строения, то положение осей опирания относительно оси опоры назначается таким образом, чтобы равнодействующие вертикальных опорных реакций минимально отклонились от оси опоры.

В свайных, столбчатых и стоечных (рамных) опорах железобетонные насадки или ригели выполняют также роль оголовков (подферменников). Они устраиваются более узкими, чем оголовки массивных опор. Их ширина назначается по условиям размещения и заделки свай или стоек и из условия, чтобы расстояния от краев нижних плит опорных частей до краев ригеля или насадки не превышали 15 см.

5.5.2. Основные особенности компоновки промежуточных опор

Промежуточные опоры свайные, столбчатые, стоечные и рамные сооружаются, преимущественно, по действующим типовым проектам . При индивидуальном проектировании таких опор рекомендуется учитывать следующее:

Основные несущие элементы (сваи, стойки) целесообразно располагать но осям опорных частей или в непосредственной близости от них. Такое решение позволит уменьшить армирование насадки (ригеля);

При значительных горизонтальных усилиях (например, в мостах на кривых) следует применять наклонные сваи и стойки;

При расчете ригелей в виде перевернутой буквы «Т» (рис. 5.8) количество вертикальной арматуры в ребре, (хомутов) складывается из трех компонентов:

а) хомуты, количество которых определяется расчетом па перерезывающую силу;

б) вертикальные стержни, работающие на отрыв полок опорными реакциями балок (расчет на осевое растяжение);

в) хомуты, воспринимающие крутящие моменты в ригеле при загружении временной нагрузкой одного пролета.

Для предварительном оценки расхода арматуры в ригелях, учитывая значительную трудоемкость расчетов по п. п. «б» и «в», допускается количество вертикальной арматуры, определенное по п. «а», удвоить.

Монолитные и сборно-монолитные массивные опоры сооружаются обычно с вертикальными гранями. Нижним (подтопляемый водой) ярус опоры имеет обтекаемую форму с заостренными ледорезом и кормом.

Грани ледореза образуют обычно угол 60°-90° и сопрягаются между собой и боковыми вертикальными гранями опоры цилиндрическими поверхностями радиусом 0,75 м.

Рис. 5.8. Односеточная опора с ригелем в виде перевернутой буквы «Т»

Ледорез начинается от обреза фундамента и должен возвышаться над уровнем высокого ледохода, поскольку у ледореза происходит торошение льда. Для районов с суровыми и особо суровыми климатическими условиями верх ледореза назначают не ниже расчетной границы зоны переменного уровня воды, т. е. не менее чем на 1 м выше наивысшего уровня ледохода пли с большим запасом, если предполагается значительное торошение льда.

Верхние части опоры могут иметь прямоугольную форму или (при большой ширине моста) состоять из отдельных столбов, стоек. Здесь могут применяться пустотелые конструкции коробчатого или круглого сечения, причем для железобетонных пустотелых конструкции толщина стенок может быть принята не менее 15 см.

Если все тело опоры (начиная от обреза фундамента) проектируется железобетонным, что допускается СНиП 2.05.03-84, то размеры его как вдоль, так и поперек оси моста могут быть значительно уменьшены по сравнению с размерами массивных бетонных опор. В этом случае опора становится более деформативной и лимитирующим может оказаться расчет опоры по горизонтальным перемещениям ее оголовка.

Положение обреза фундамента относительно уровней воды действующими нормами не регламентируется. В случае его расположения в пределах колебания уровней воды и льда следует предусматривать на обрезе фундамента фаски размером не менее 0,3×0,3 м, а фундаменту придавать обтекаемую в плане форму. Нe регламентируется и положение подошвы плиты свайного ростверка относительно уровней воды. В современной практике строительства имеются случаи сооружения опор с расположением плиты свайного ростверка целиком выше уровня межени. Такое конструктивное решение, безусловно является наиболее удобным при производстве работ, однако с эксплуатационной точки зрения оно неприемлемо на реках с сильным ледоходом, а также по архитектурным соображениям.

При конструировании фундамента необходимо рассмотреть разные варианты расположения его по высоте с учетом способов производства работ, затрат на вспомогательные сооружения и в процессе строительства и с учетом условий эксплуатации моста. Если обрез фундамента располагается выше уровня низкого ледохода (УНЛ), то при расчете фундамента необходимо учесть давление льда на фундамент в период ледохода, которое, естественно, больше, чем давление на тело опоры. Необходимо также учитывать дополнительную вертикальную нагрузку на фундамент в период зимнего стояния льда от зависания ледового покрова на обрезе фундамента или на сваях (если нижняя поверхность слоя льда располагается ниже подошвы плиты высокого свайного ростверка), возникающего при колебаниях уровня воды зимой. Такого зависания не происходит, если располагать обрез фундамента ниже нижней поверхности льда наинизшего ледостава не менее, чем на 0,5 м.

В этом случае к бетонной кладке фундамента можно предъявлять требования как к бетону подводных конструкций.

Расположение обреза фундамента выше УМВ может существенно упростить возведение как фундамента, так и тела опоры. Если фундамент свайный, то необходимо учитывать, что для возможности бетонирования плиты ростверка насухо потребуется устраивать ограждение из шпунта или в виде опускного ящика и укладывать под подошвой плиты ростверка тампонажный слой из бетона. Все эти мероприятия не требуются, если подошву плиты поднять выше РУ. Но если фундамент устраивается из буронабивных свай с островка, который так иди иначе ограждается (например, шпунтом), то плиту ростверка можно забетонировать в котловане с водоотливом без особых дополнительных затрат.

Таким образом, вопрос о высотном положении обреза фундамента подошвы плиты свайного ростверка должен решаться путем технико-экономического сравнения варианта с учетом перечисленных и других (например, архитектурных) требований.

5.6. Рекомендации по выбору схемы высокого свайного ростверка опоры

С точки зрения простоты производства работ, снижения стоимости вспомогательных сооружений (направляющий каркас и др.) наиболее рациональным является ростверк с вертикальными сваями. Такой ростверк, кроме того, наиболее эффективно воспринимает вертикальные силы и момент, действующие в вертикальных плоскостях. Однако, горизонтальные силы, приложенные к плите ростверка, могут быть восприняты только за счет работы свай на изгиб. Изгибающие моменты в сваях увеличиваются пропорционально увеличению свободной длины сваи (от подошвы плиты ростверка до уровня размыва грунта). Ориентировочно можно считать, приемлемой свободную длину до 6 - 7 диаметров сваи (столбов). При буронабивных сваях и сваях-оболочках диаметром более 1,0 м ростверки на вертикальных сваях являются в настоящее время единственно возможным решением в связи с отсутствием оборудования для наклонного бурения и вибропогружения наклонных свай-оболочек.

С точки зрения эффективности восприятия горизонтальных сил теоретически наиболее выгодной является схема ростверка так называемого козлового типа (рис. 5.9, а ), в котором в сваях возникают только продольные усилия. Изгибающие моменты возникают лишь из-за жесткости заделки свай в плите ростверка в связи с ее перемещениями, вызванными продольными деформациями свай, и при внецентренном приложении усилий. Распределение усилий в сваях оказывается наиболее равномерным и поэтому требуется минимальное количество свай. Однако практически осуществлять такую схему сложно по конструктивным причинам. На практике применяются близкие к оптимальной схемы без обратных уклонов свай по типу, показанному на рис. 5.9, б . Наклоны сваям задаются в пределах от 3:1 до 5:1. При более крутых наклонах неточность выполнения заданного наклона существенно влияет па распределение усилий между связями.

Рис. 5.9. Свайные ростверки:

а - козлового типа; б - с вертикальными и наклонными сваями

Схема с веерным расположением свай, показанная на рис. 5.10 наименее эффективна (и обычно оказывается неприемлемой) из-за больших изгибающих моментов, возникающих в сваях, и больших перемещении опоры. Это легко понять, если привести все силы, действующие на опору, к точке пересечения oceй свай (точка М). Горизонтальная и вертикальная равнодействующие воспринимаются за счет продольных усилии в сваях, но изгибающий момент может быть воспринят только за счет работы свай на изгиб. При этом возникает значительный наклон опоры, и горизонтальные перемещения оголовка оказываются значительно больше, чем в случае ростверка с вертикальными сваями. Повысить жесткость ростверка можно путем увеличения диаметра свай (применяя, например, железобетонные сваи-оболочки) или их количества.

Рис. 5.10. Ростверки с веерным расположением свай

5.7. Особенности конструирования опор рамных мостов

Опоры и пролетные строения рамных мостов представляют собой единое целое как в смысле статической работы, так и в конструктивном отношении. Рамные мосты в настоящее время применяются относительно редко и выполняются почти исключительно из железобетона. Определенную специфику имеет узел сопряжения пролетного строения (ригеля рамы) с опорой (стойкой рамы). В этом узле часть изгибающего момента, действующего в пролетном строении, передается па опору.

При больших пролетах пролетные строения обычно выполняются коробчатыми. Рабочая арматура пролетного строения в надопорном сечении располагается в верхней плите и частично (по величине момента, передаваемого на опору) пли полностью заанкеривается у противоположной грани опоры. Если опора монолитная или сборномонолитная, а сборка пролетного строения ведется навесным способом, то опора возводится до уровня верха пролетного строения, и арматура опоры заводится и заанкеривается выше уровня анкеровки рабочей арматуры пролетного строения (в верхнем его поясе). Такая конструкция обеспечивает надежное соединение опоры и пролетного строения.

Если опора в верхней части имеет коробчатую конструкцию, то ее боковые (продольные) стенки располагают в одних плоскостях со стенками пролетного строения, а внутри коробки пролетного строения (в плоскостях поперечных стенок опоры) устраивают диафрагмы. Они обеспечивают передачу изгибающего момента на опору, для чего рабочая арматypa опоры, расположенная в ее поперечных стенках, должна заводиться в эти диафрагмы. Изгибающий момент передается в виде пары сил от вертикальных стенок пролетного строения через диафрагмы на арматуру и бетон опоры. При этом сами диафрагмы работают в вертикальном направлении на срез и соответственно должны быть заармированы расчетной наклонной арматурой или сетками. Дополнительное армирование поперечной арматурой может потребоваться и в надопорных участках пролетного строения - как в его стенках, так и в верхней и нижней плитах. Таким образом, при конструировании коробчатого узла сопряжения пролетного строения с опорой должны быть продуманы сложные условия его пространственной работы.

Опоры железобетонных рамных мостов могут проектироваться как из обычного железобетона, так и предварительно напряженными. При этом в опорах на водотоках допускается применять только стержневую арматуру (ненапрягаемую или предварительно напряженную).

В остальном опоры рамных мостов должны удовлетворять тем же конструктивным требованиям, что и опоры балочных мостов.

5.8. Опоры арочных мостов

Железобетонные арочные мосты являются наиболее надежными и долговечными, почти не требуют эксплуатационных расходов , поскольку бетон арок работает в наиболее естественных условиях - преимущественно на сжатие (изгибающие моменты, возникающие в арках, обычно, очень малы). Недостатками арочных мостов являются: сложность сооружения арок и более высокая стоимость опор, поскольку опоры требуются более массивные, чем у балочных мостов, с более развитыми в плане фундаментами, поскольку опоры арочных мостов воспринимают большие горизонтальные силы от распора арок. Под действием горизонтальных и вертикальных сил они не должны испытывать значительных перемещений, поскольку это существенно влияло бы на напряженное состояние арок. Отсюда вытекают определенные требования к основаниям и фундаментам опор. Наиболее подходящими являются основания в виде скальных или полускальных пород. Вполне приемлемыми являются крупнообломочные, гравелистые грунты, крупно - и среднезернистые и плотные пески. Известны случаи строительства арочных мостов па твердых глинах. Если такие породы налегают глубоко, то в качестве фундаментов применяются свайные ростверки. Последние целесообразны, если опоры сооружаются па суходоле или при небольшой глубине воды. Устои арочных мостов воспринимают односторонний распор от постоянной и временных нагрузок, поэтому их фундаменты должны быть значительно развиты вдоль оси моста в сторону берега. При этом, если несущий слой грунта залегает глубоко, то наиболее целесообразным решением фундамента является свайный ростверк с наклонными сваями, ориентированными по направлению равнодействующей от постоянной и временной вертикальной нагрузок. Подошва плиты ростверка при этом устраивается наклонной и только у передней грани плиты она проектируется горизонтальной, и здесь 2-3 ряда свай погружаются вертикально или наклонно в сторону пролета (с учетом сил, действующих со стороны берега).

Пяты арок должны возвышаться над наивысшим уровнем ледохода (а для железнодорожных мостов также и над расчетным уровнем высоких вод) не менее, чем на 0,25 м.

При выборе вариантов моста (в том числе при курсовом и дипломном проектировании) размеры опор и фундаментов могут быть определены предварительно, рассматривая арки как трехшарнирные. Собственный вес опоры играет очень существенную роль, поэтому размеры опоры и фундамента желательно подбирать методом последовательных приближений (2-3 шага).

При расчете устоя временная нагрузка (в виде эквивалентной нагрузки для линии влияния с максимумом посередине) располагается только на арочном пролетном строении (т. е. с одной стороны устоя). Распор «Н » от временной нагрузки приближенно определяется по формуле:

где l и f - пролет и стрелка арки;

q в - суммарная временная нагрузка с учетом всех полос загружения (для автодорожных мостов).

Вертикальное давление:

Усилия от постоянных нагрузок:

где q р - постоянная нагрузка от веса балласта и верхнего строения пути (или веса дорожного покрытия в случае автодорожного моста), включая вес арочного пролетного строения;

т - коэффициент, учитывающий неравномерность распределения веса арок и стоек надарочного строения по длине пролета, которым можно принять при отношениях f /l , равных 1/4, 1/3 и 1/2, равным соответственно 0,85; 0,8 и 0,7.

Коэффициенты надежности по нагрузке γ в данном случае принимаются большими единицы. Силы Q и Н прикладываются к опоре в центрах опорных сечении арок и считаются распределенными поровну между всеми арками пролетного строения.

При эскизном расчете промежуточной опоры величины Q и Н определяются аналогичным образом, но временная нагрузка располагается на одном пролете (учитывается действие одностороннего распора), а для постоянных нагрузок коэффициенты надежности по нагрузке γf принимаются большими единицы для пролета, на котором установлена временная нагрузка, и меньшими единицы для другого (незагруженного) пролета, а также для опоры и фундамента. Конструирование моста рекомендуется вести таким образом, чтобы распоры арок от постоянных нормативных нагрузок, действующие на промежуточные опоры с одного и другого пролета взаимно уравновешивались.

6. РАСЧЕТ МОСТОВЫХ ОПОР

6.1. Общие положения

В соответствии с требованиями СНиП 2.05.03-84 расчеты опор следует выполнять по предельным состояниям на действие постоянных нагрузок и неблагоприятных сочетаний временных.

Для бетонных и железобетонных опор капитальных мостов расчеты производят по двум группам предельных состояний:

Устойчивость фундаментов опор против опрокидывания и сдвига (плоского и глубокого - совместно с грунтом основания);

2.11. Сопряжение моста с насыпью следует конструировать так, чтобы гравийно-песчаная подушка под лежнем переходной плиты всей своей шириной опиралась на дренирующий грунт (рис. 2, а), либо на насыпь ниже глубины промерзания (рис. 2, б, в).

2.12. В районах недостаточного увлажнения, где средняя многолетняя сумма осадков (период наблюдений не менее 20 лет) за сентябрь и октябрь не превышает 50 мм, а также для песчаных насыпей подушка под лежень может опираться выше глубины промерзания (рис. 2, г).

Рис. 2. Схема общей компоновки узла сопряжения моста с насыпью:

1 - дренирующий грунт; 2 - грунт насыпи; hпром - глубина промерзания грунта

В этих районах для предварительно уплотненных насыпей, имеющих высоту более 3 - 4 м, допускается снижение объема дренирующей засыпки (рис. 3). При этом толщина дренирующей засыпки от верха покрытия для III дорожно-климатической зоны H = 2/3  Hнас  4 м и для IV - V зон H¢ = 2/3  Hнас  3 м. Снижение объема дренирующей засыпки необходимо учитывать при расчете береговых опор на горизонтальное давление грунта насыпи.

2.13. Для устройства дренирующей засыпки за опорами и конусов применяют грунты и материалы, не увеличивающиеся в объеме при замерзании: крупный и средний песок, мелкий непылеватый песок (частиц менее 0,1 мм не более 25 %), металлургический шлак. Коэффициент фильтрации дренирующего грунта после уплотнения до величины 0,98 должен быть не менее 2 - 3 м/сутки.

Рис. 3. Схема устройства дренирующей засыпки на мостах в районах недостаточной влажности:

1 - переходная плита; 2 - дренирующий грунт; 3 - грунт насыпи

2.14. Дорожное покрытие и обочины земляного полотна на протяжении длины переходных плит плюс 4 м должны быть водонепроницаемыми, что обеспечивается: а) для асфальтобетонного покрытия - укладкой двух слоев асфальтобетона общей толщиной 7 см («Рекомендации по устройству асфальтобетонных покрытий повышенной водонепроницаемости на мостах». Союздорнии, М., 1966); б) для цементобетонного покрытия - изготовлением верхней (монолитной) части плиты из бетона повышенной плотности с воздухововлекающими, газообразующими или уплотняющими добавками, вводимыми с водой затворения, согласно ВСН 85-68; в) для обочин - укладкой асфальтобетона или грунта, обработанного вяжущим. В районах недостаточного увлажнения (п. 2.12) обочины не укрепляют.

2.15. При расположении моста на вогнутой кривой или при уклоне дорожного покрытия в сторону моста поверхностные воды с покрытия должны отводиться за пределы сопряжения продольными лотками и сбрасываться поперечными лотками, устраиваемыми на откосе насыпи (рис. 4). Для этого насыпь около моста на длине переходных плит плюс 10 м уширяют на 0,75 м с каждой стороны.

2.16. При расположении моста или путепровода на выпуклом профиле поверхностную воду также следует отводить продольными лотками за пределы сопряжений и сбрасывать поперечными лотками по откосу насыпи.

Количество поперечных лотков во всех случаях определяется расчетом и исходя из местных условий.

Рис. 4. Пример устройства водоотвода в узле сопряжения (план):

1 - переходные плиты; 2 - укрепленная обочина; 3 - водоотводный и водосбросный лотки; 4 - лестничный сход; 5 - колесоотбойное ограждение; 6 - бетонный бордюр; 7 - решетчатые укрепления конуса

2.17. Неподтапливаемые конусы и откосы, а также подтапливаемые (в случаях облегченного гидравлического режима) можно укреплять, помимо сплошных конструкций, решетчатыми из сборных элементов с заполнением ячеек различными материалами в соответствии с «Техническими указаниями по применению сборных решетчатых конструкций для укреплений конусов и откосов земляного полотна» ВСН 181-74 (М., Оргтрансстрой, 1974).

На городских путепроводах и неподтапливаемых конусах мостов для заполнения ячеек решетчатых конструкций рекомендуется применять цветной щебень в сочетании с засевом специально подобранных трав.

2.18. Объем работ на устройство одного сопряжения для габарита моста Г-9 (проект Союздорпроекта, 1970) приведен в табл. 4.

Таблица 4

2.19. Технико-экономическая эффективность применения рекомендуемых типов сопряжений мостов и путепроводов с насыпью характеризуется экономией приведенной стоимости на мост в среднем 2,8 тыс. руб. за счет снижения себестоимости перевозок и эксплуатационных затрат, а также экономии материала береговых опор. Коэффициент эффективности и срок окупаемости сопряжений превосходят нормативные значения, что свидетельствует о высоких технико-экономических показателях этих конструкций.

3. Технология строительства

3.1. Для обеспечения строительства земляного полотна по всей трассе без разрывов и во избежание неравномерных осадок основания насыпи на подходах к мосту необходимо:

а) сооружать береговые опоры моста или путепровода с опережением возведения насыпи на подходах;

б) уплотнять насыпь на подходах к мосту одновременно с устройством дренирующей засыпки за опорами и конусов.

Строительство береговых опор в разрывах земляного полотна допускается при надлежащем технико-экономическом обосновании. При этом размеры разрыва должны быть не менее 2 - 3 высот насыпи в каждую сторону от моста. Грунт для засыпки разрыва (за пределами дренирующей засыпки) должен быть однороден грунту прилегающей насыпи.

3.2. Строительство сопряжения является частью комплекса по возведению береговых опор моста с насыпью и включает следующие работы:

а) подготовительные работы: в необходимых случаях в соответствии с проектом производят усиление грунтов основания механизированным уплотнением, заменяют слабые грунты, устраивают вертикальные песчаные дрены или дренажные прорези (п. 3.10);

б) возведение береговых опор;

в) отсыпку участков земляного полотна на подходах к мосту с одновременной отсыпкой дренирующего грунта за опорами и конусов; устройство гравийно-щебеночных подушек под лежень и дренажных слоев под переходными плитами;

г) монтаж сборных или устройство сборно-монолитных оголовков опор и конструкций сопряжений;

д) установку береговых пролетных строений; омоноличивание швов; устройство изоляции и деформационных швов;

е) укладку покрытия на подходах к мосту и на его береговых пролетах;

ж) устройство поверхностного водоотвода возле моста и лестничных сходов;

з) срезку конусов до их проектного очертания, укрепление конусов и обочин земляного полотна возле моста.

В зависимости от типа береговых опор (козловые или стоечные на свайном или естественном основаниях; свайные козлового или вертикального типа) последовательность строительных работ может меняться.

3.3. Применение свайных опор позволяет лучше уплотнить грунты насыпи и конусов и сократить разрыв между сроком окончания сооружения земляного полотна и сроком строительства моста за счет отсыпки нижней части насыпи из дренирующего грунта до забивки свай.

3.4. Сопряжения строят в четыре этапах):

х) Подробнее см. «Технологические карты на обратную засыпку, разравнивание и уплотнение грунта в сопряжении земляного полотна автомобильных дорог с мостами и путепроводами», разработанные в 1975 г. ЦНИИОМТП Госстроя СССР.

I этап. При свайных опорах (рис. 5, а) отсыпают призму из дренирующего грунта с послойным уплотнением до коэффициента 0,98 - 1,0 и забивают с нее сваи береговой опоры.

При высоте насыпи Ннас = 3 м высоту призмы принимают равной (Ннас = 2 м); при Ннас = 4 ¸ 6 м высота призмы - (Ннас = 3 м). При высоте насыпи более 6 м высота призмы определяется наличием копрового оборудования для погружения свай на глубину не менее 4 м ниже подошвы призмы.

Рис. 5. Схемы технологической последовательности при устройстве сопряжений:

а - при свайных береговых опорах; б - при опорах на фундаментах; 1 - дренирующий грунт; 2 - свая; 3 - стреловый кран с копровым оборудованием; 4 - граница приближения тяжелых уплотняющих машин; 5 - зона уплотнения малогабаритными механизмами; 6 - подушка под лежень переходных плит; 7 - временное щебеночное покрытие; 8 - переходная плита; 9 - срезаемый слой дренирующего грунта

При стоечных и козловых опорах на свайном или естественном основании (рис. 5, б) возводят фундамент и основную часть тела опоры; устанавливают пролетные строения.

II этап. Возводят земляное полотно подхода к мосту на всю высоту сразу же после сооружения береговых опор. Вблизи моста земляное полотно и конусы отсыпают из дренирующего грунта и послойно уплотняют малогабаритными механизмами (п. 3.16); на расстоянии 2 м и более от моста грунт уплотняют тяжелыми машинами. Целесообразно отсыпать конус несколько больших размеров, чем проектное очертание (п. 3.11). Одновременно отсыпают и уплотняют гравийно-щебеночную подушку под лежень переходных плит.

Необходимо выполнять систематический контроль за уплотнением.

После возведения земляного полотна на всю высоту дальнейшая последовательность работ зависит от типа покрытия (типа переходных плит).

III этап. При цементобетонном покрытии в пределах длины поверхностных переходных плит плюс 10 м устраивают временное покрытие из щебня или каменной мелочи, которое эксплуатируется в течение года.

При асфальтобетонном покрытии с полузаглубленными и заглубленными плитами роют траншеи под лежни и котлованы под переходные плиты. В траншеи укладывают лежень; в котлованы втрамбовывают щебень слоем 5 см и после устройства щебеночной подушки укладывают переходные плиты; устраивают временное покрытие (на длине переходных плит плюс 10 м) из щебня или каменной мелочи, которое эксплуатируется в течение года.

IV этап. При цементобетонном покрытии с поверхностными плитами удаляют верхний загрязненный слой временного покрытия; при необходимости досыпают основание дорожной одежды и уплотняют его до 0,98 - 1,0. Роют траншеи под лежни и котлованы под переходные плиты. В траншеи укладывают лежень; в котлованы втрамбовывают щебень слоем 5 см и после устройства щебеночной подушки укладывают переходные и промежуточные усиленные дорожные плиты, затем устраивают постоянное покрытие с водоотводными лотками. Срезают конусы до проектного очертания и устраивают укрепление их и обочин.

При асфальтобетонном покрытии с полузаглубленными и заглубленными плитами удаляют верхний загрязненный слой временного покрытия; при необходимости досыпают основание дорожного покрытия до проектной отметки и уплотняют его по 0,98 - 1,0. Укладывают постоянное покрытие с водоотводными лотками. Срезают конусы до проектного очертания и устраивают укрепление их и обочин.

3.5. Дренирующий грунт засыпки за опорами и отсыпки конусов уплотняют при оптимальной влажности послойно до коэффициента уплотнения 0,98 - 1,0. Толщину слоев принимают в зависимости от используемых механизмов (табл. 22 ). При ручном уплотнении толщина слоев должна быть не более 10 - 15 см.

При наличии водоемов вблизи трассы целесообразно дренирующий грунт засыпки и конусов перед уплотнением поливать водой, увеличивая влажность грунта против оптимальной на 20 %. При этом можно несколько увеличить толщину уплотняемых слоев.

3.6. Необходимо систематически контролировать уплотнение отбором проб и определением плотности и влажности грунта. Плотность грунта определяют методом кольца с режущим краем, а влажность - методом высушивания до постоянной массы.

Плотность и влажность грунтов с каждой стороны моста определяют на каждом метре высоты отсыпанной насыпи в трех местах: на расстоянии 2 - 3 м от береговой опоры на конусе и на расстоянии 50 м от моста. В последнем случае плотность и влажность определяют по двум пробам, взятым примерно на половине высоты насыпи и на расстоянии 0,7 м от ее верха.

3.7. При устройстве щебеночной подушки под лежень переходных плит и при укладке щебеночного основания под плиты особенно тщательно следует уплотнять щебень. Нижний слой щебня толщиной 5 см должен быть втрамбован в грунт. Контроль качества уплотнения щебеночного основания осуществляют в соответствии с указаниями СНиП III-Д.5-72.

3.8. Поверхностные переходные плиты укладывают одновременно с устройством покрытия, т.е. через год после возведения земляного полотна.

Полузаглубленные и заглубленные переходные плиты укладывают в один год с возведением земляного полотна, а покрытие в пределах плит - через год.

При строительстве моста в разрыве насыпи, возводимой на грунтах повышенной сжимаемости, полузаглубленные и заглубленные плиты укладывают через год после засыпки разрыва.

3.9. При возведении насыпей на сжимаемых грунтах и при необходимости открыть движение транспортных средств до истечения годовой выдержки земляного полотна допускают:

а) устройство гравийного или щебеночного покрытия на подходах к мосту (на длине не менее двух высот насыпи) с укладкой переходных плит (после досыпки и доуплотнения верхней части насыпи) через год;

б) временная укладка переходных плит поверхностного типа с последующей съемкой их через год для досыпки и доуплотнения верхней части насыпи и установкой плит в проектное положение.

В обоих случаях в сметах на строительство объектов должны быть предусмотрены средства на окончание работ по устройству сопряжения моста (путепровода) с насыпью.

3.10. Для ускорения срока осадки (консолидации) основания насыпи могут быть применены специальные технологические (временная пригрузка насыпи слоем грунта) или конструктивные (применение вертикальных дрен или дренажных прорезей, частичная или полная замена грунта основания, уположение откосов насыпи, пригрузка ее бермами и др.) мероприятиях).

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то