Простой функциональный генератор своими руками. Простейший генератор звуковой частоты. Генератор высокой частоты


Высокочастотный генератор сигналов необходим при ремонте и настройке радиоприёмных устройств и потому довольно востребован. Имеющиеся на рынке лабораторные генераторы ещё советского производства имеют хорошие характеристики, как правило, избыточные для любительских целей, но стоят они довольно дорого и зачастую перед использованием требуют ремонта. Несложные генераторы иностранных производителей стоят ещё дороже и при этом не отличаются высокими параметрами. Это вынуждает радиолюбителей изготавливать такие устройства самостоятельно.

Генератор разработан как альтернатива простым промышленным приборам, аналогичным GRG-450B . Он работает во всех радиовещательных диапазонах, его изготовление не требует намотки катушек индуктивности и трудоёмкого налаживания. В приборе реализованы растянутые КВ-диапазоны, что позволило отказаться от сложного механического верньера, встроенный милливольтметр выходного сигнала, частотная модуляция. Изготавливается устройство из дешёвых распространённых деталей, которые найдутся у любого радиолюбителя, занимающегося ремонтом радиоприёмников.

Анализ множества любительских конструкций подобных генераторов выявил ряд общих характерных для них недостатков: ограниченный диапазон частот (большинство перекрывают только диапазоны ДВ, СВ и КВ); значительное перекрытие частоты на высокочастотных диапазонах затрудняет её точную установку и приводит к необходимости изготовления верньера. Зачастую требуется намотка катушек индуктивности с отводами. К тому же описания этих конструкций слишком краткие, а нередко вообще отсутствуют.

Было принято решение самостоятельно сконструировать высокочастотный генератор сигналов, удовлетворяющий следующим требованиям: предельно простая схема и конструкция, катушки индуктивности без отводов, отсутствие самостоятельно изготавливаемых механических узлов, работа во всех вещательных диапазонах, включая УКВ, растянутые диапазоны и электрический верньер. Желателен 50-омный коаксиальный выход.

Таблица

Диапазон

Частота, МГц

Напряжение 1) , мВ

94...108 2)

1) На коаксиальном выходе при сопротивлении нагрузки 50 Ом, аффективное значение.

2) При отключенном конденсаторе переменной емкости и напряжении на варикапе 0...5 В.

В результате проверки множества технических решений и неоднократных доработок появился описанный ниже прибор. Диапазоны генерируемых им частот указаны в таблице. Точность установки частоты генератора - не хуже ±2 кГц на частоте 10 МГц и ±10 кГц на частоте 100 МГц. Её уход за час работы (после часового прогрева) не превышает 0,2 кГц на частоте 10 МГц и 10 кГцначастоте 100 МГц. В той же таблице приведены максимальные эффективные значения выходного напряжения в каждом диапазоне. Нелинейность шкалы милливольтметра - не более 20 %. Напряжение питания - 7,5...15 В. Схема генератора сигналов представлена на рис. 1.

Рис. 1. Схема генератора сигналов

Как правило, генераторы с двухточечным подключением колебательного контура, способные работать на частоте более 100 МГц, в средневолновом диапазоне генерируют скорее искажённый меандр, чем синусоиду. Для уменьшения искажений требуется значительное изменение режимов работы активных элементов генератора в зависимости от частоты. Сигнал применённого в описываемом устройстве задающего генератора с включёнными последовательно по постоянному току полевым и биполярным транзисторами имеет гораздо меньшие искажения. Их можно снижать, регулируя режим работы лишь биполярного транзистора.

На низкочастотных диапазонах режим работы транзистора VT2 задан включёнными последовательно резисторами R1 и R9. С переходом на высокочастотные диапазоны переключатель SA1.2 замыкает резистор R1. Для увеличения крутизны характеристики полевого транзистора VT1 на его затвор подано постоянное смещение, равное половине напряжения питания. Напряжение питания задающего генератора стабилизировано интегральным стабилизатором DA1. Резистор R10 служит минимальной нагрузкой стабилизатора, без которой его выходное напряжение засорено шумом.

В качестве катушек индуктивности L1-L10 задающего генератора использованы дроссели промышленного производства. Их коммутирует переключатель SA1.1. В диапазоне УКВ2 индуктивностью L11 служит отрезок провода длиной около 75 мм, соединяющий переключатель с печатной платой.

Отклонение фактической индуктивности дросселя от номинальной может быть довольно значительным, поэтому границы диапазонов выбраны с некоторым перекрытием, чтобы исключить их трудоёмкую укладку. Указанные в таблице границы диапазонов получены без какого-либо подбора дросселей. Предпочтительно применять дроссели большого размера, стабильность индуктивности которых (следовательно, и генерируемой частоты) выше, чем у малогабаритных.

Для перестройки частоты в приборе использован трёхсекционный конденсатор переменной ёмкости с редуктором, применявшийся в радиоприёмниках "Океан", радиолах "Мелодия" и многих других. Чтобы его корпус не имел электрического контакта с корпусом прибора, он закреплён внутри него через изолирующую прокладку. Это дало возможность включить одну секцию конденсатора последовательно с двумя другими соединёнными параллельно. Так реализованы растянутые КВ-диапазоны. В диапазонах ДВ, СВ1 и СВ2, где требуется большое перекрытие по частоте, переключатель SA1.2 соединяет корпус переменного конденсатора с общим проводом. В диапазонах КВ6, УКВ1 и УКВ2 предусмотрено отключение конденсатора переменной ёмкости выключателем SA2. Когда выключатель замкнут, частота устойчивой генерации не превышает 37 МГц.

Параллельно переменному конденсатору подключена цепь из варикапной матрицы VD1, конденсаторов C6, C9 и резистора R6, служащая частотным модулятором, электрическим верньером, а при отключённом переменном конденсаторе - основным элементом настройки. Поскольку амплитуда высокочастотного напряжения на колебательном контуре достигает нескольких вольт, соединённые встречно-последовательно варикапы матрицы вносят гораздо меньшие искажения, чем вносил бы одиночный варикап. Напряжение настройки на варикапы матрицы VD1 поступает с переменного резистора R5. Резистор R2 несколько линеаризует шкалу настройки.

Задающий генератор связан с выходным повторителем на транзисторе VT4 через конденсатор C12, предельно малая ёмкость которого уменьшает влияние нагрузки на генерируемую частоту и снижение амплитуды выходного напряжения на частоте выше 30 МГц. Для частичного устранения снижения амплитуды на низкой частоте конденсатор C12 зашунтирован цепью R11C14. Простой эмиттерный повторитель с высоким выходным сопротивлением на биполярном транзисторе оказался наиболее подходящим решением для такого широкополосного прибора. Влияние нагрузки на частоту сравнимо с истоковым повторителем на полевом транзисторе, а зависимость амплитуды от частоты гораздо меньше. Применение дополнительных буферных ступеней только ухудшало развязку. Для обеспечения хорошей развязки в диапазонах ДВ-КВ транзистор VT4 должен иметь высокий коэффициент передачи тока, а в диапазонах УКВ - предельно малые межэлектродные ёмкости.

Выход повторителя соединён с зажимом XT1.4, предназначенным в основном для подключения частотомера, что приводит к некоторому снижению выходного напряжения. Внутреннее сопротивление этого выхода на КВ-диапазонах - около 120 Ом, выходное напряжение более 1 В. На диодахVD2, VD3, транзисторе VT3 и светодиоде HL1 реализован индикатор наличия ВЧ-напряжения на выходе повторителя.

С движка переменного резистора R18, служащего регулятором выходного напряжения, сигнал поступает на делитель R19R20, который, помимо дополнительной развязки генератора и нагрузки, обеспечивает выходное сопротивление коаксиального выхода (разъём XW1) на КВ-диапазонах, близкое к 50 Ом. На УКВ оно снижается до 20 Ом.

Уход частоты при изменении положения движка R18 из верхнего по схеме положения в нижнее достигает 70...100 кГц на частоте 100 МГц без нагрузки, а при подключённой нагрузке 50 Ом - не более 2 кГц (на той же частоте).

Для измерения выходного напряжения на разъёме XW1 предусмотрен детектор, выполненный на резисторах R15, R17, диоде VD4 и конденсаторе C17. Вместе с внешним цифровым вольтметром или мультиметром в режиме вольтметра, подключённым к контактам XT 1.3 (плюс) и XT1.1 (минус), он образует милливольтметр эффективного значения выходного напряжения генератора. Для получения более линейной шкалы на диод VD4 подано постоянное напряжение смещения 1 В, которое устанавливают многооборотным подстро-ечным резистором R17.

Внешний вольтметр должен иметь предел измерения 2 В. В этом случае в старшем разряде его индикатора будет постоянно выведена единица, а в младших разрядах - измеренное выходное напряжение в милливольтах. Минимальное измеряемое напряжение - около 20 мВ. Выше 100 мВ показания будут несколько завышены. При напряжении 200 мВ погрешность доходит до 20 %.

Питают генератор от стабилизированного источника постоянного напряжения 7...15 В либо от аккумуляторной батареи. При нестабилизированном блоке питания генерируемый высокочастотный сигнал неизбежно будет модулирован частотой 100 Гц.

К монтажу генератора следует подойти очень тщательно, от этого зависит стабильность его параметров. Большинство деталей установлены на печатной плате из фольгированного с двух сторон изоляционного материала, изображённой на рис. 2.

Рис. 2. Печатная плата из фольгированного с двух сторон изоляционного материала

Рис. 3. Расположение деталей на плате

Расположение деталей на плате показано на рис. 3. Площадки фольги общего провода с двух сторон платы соединяют между собой проволочными перемычками, впаянными в отверстия, которые показаны залитыми. Элементы выходного повторителя после монтажа закрывают с двух сторон платы металлическими экранами, контуры которых показаны штриховыми линиями. Эти экраны должны быть надёжно, пайкой по периметру, соединены с фольгой общего провода. В экране, находящемся со стороны печатных проводников, над контактной площадкой, с которой соединён эмиттер транзистора VT4, сделано отверстие, сквозь которое проходит припаянный к этой площадке медный штырь. В дальнейшем к нему припаивают центральную жилу коаксиального кабеля, идущего к переменному резистору R18 и конденсатору C18. Оплётку кабеля соединяют с экраном повторителя.

В генераторе применены в основном постоянные резисторы и конденсаторы для поверхностного монтажа типоразмера 0805. Резисторы R19 и R20 - МЛТ-0,125. Конденсатор C3 - оксидный с низким ЭПС, C7 - оксидный танталовый К53-19 или аналогичный. Катушки индуктивности L1-L10 - стандартные дроссели, предпочтительно отечественные серий ДПМ, ДП2. По сравнению с импортными, они имеют значительно меньшее отклонение индуктивности от номинальной и большую добротность.

При отсутствии дросселя нужного номинала катушку L10 можно изготовить самостоятельно, намотав восемь витков провода диаметром 0,08 мм на резистор МЛТ-0,125 сопротивлением не менее 1 МОм. В качестве индуктивности L11 применён отрезок жёсткого центрального провода от коаксиального кабеля длиной около 75 мм.

Трёхсекционные конденсаторы переменной ёмкости с редуктором чрезвычайно распространены, но если такой отсутствует, можно применить и двухсекционный. В этом случае корпус конденсатора соединяют с корпусом прибора, а каждую секцию подключают через отдельный выключатель, причём одну из секций - через растягивающий конденсатор. Управлять прибором с таким переменным конденсатором заметно сложнее.

Переключатель SA1 - ПМ 11П2Н, также применимы аналогичные переключатели серии ПГ3 или П2Г3. Выключатель SA2 - МТ1. Переменный резистор R18 - СП3-9б, причём заменять его переменным резистором другого типа не рекомендуется. Если переменного резистора указанного на схеме номинала не нашлось, то можно заменить его имеющим меньший номинал, но при этом нужно увеличить сопротивление резистора R16 так, чтобы общее сопротивление параллельно соединённых резисторов R16 и R18 осталось неизменным. Переменный резистор R5 - любого типа, R17 - импортный многооборотный подстроечный 3296.

Диоды ГД407А можно заменить на Д311, Д18, а диод 1 N4007 - на любой выпрямительный. Вместо варикапной матрицы КВС111А допускается применить КВС111Б, вместо 3AR4UC10 - любой светодиод красного свечения.

Задающий генератор малочувствителен к типам применённых транзисторов. Полевой транзистор КП303И может быть заменён на КП303Г- КП303Ж, КП307А-КП307Ж, а с корректировкой печатной платы - на BF410B-BF410D, КП305Ж. Для транзисторов с начальным током более 7 мА резистор R7 не требуется. Биполярный транзистор КТ3126А можно заменить любым СВЧ-транзистором структуры p-n-p с минимальными межэлектродными ёмкостями. В качестве замены транзистора КТ368АМ можно рекомендовать SS9018I.

Разъём XW1 - типа F. В него легко заделывается любой кабель, а при необходимости можно просто вставить провод. Зажимная колодкаXT1 - WP4-7 для подключения акустических систем. Разъёмы XS1 и XS2 - стандартные монофонические гнёзда под штекер диаметром 3,5 мм.

Генератор собран в корпусе от компьютерного блока питания. Его монтаж показан на фотоснимке рис. 4. Решётку вентилятора удалите, а сторону корпуса, где она находилась, закройте пластиной из листовой стали с отверстиями для разъёмов и элементов управления. Для крепления пластины следует использовать все имеющиеся в корпусе отверстия под винты.

Рис. 4. Монтаж генератора

Плату закрепите на латунной стойке высотой 30 мм, рядом с переключателем SA1, вверх печатными проводниками. Место контакта стойки с корпусом залудите и подложите под неё контактный лепесток, который соедините с экраном выходного повторителя. По возможности избегайте образования больших замкнутых контуров протекания высокочастотного тока по общему проводу, приводящих к снижению выходного напряжения на УКВ-диапазонах.

Переменный резистор R18 поместите в дополнительный металлический экран, зажав его под фланец резистора. Монтаж резисторов R19 и R20 - навесной. Их общую точку соедините с разъёмом XW1 коаксиальным кабелем. Элементы детектора милливольтметра установите на небольшой монтажной плате, которую закрепите непосредственно на разъёме XW1.

Конденсатор переменной ёмкости C4 установите в корпусе через изолирующие прокладки. Желательно сделать диэлектрический удлинитель оси конденсатора, на который будет надета ручка настройки. Но это не обязательно, допустимо надеть её и на ось самого конденсатора. Соединение переменного конденсатора с выключателем SA2 и с платой выполните жёсткой центральной жилой от коаксиального кабеля. Конденсатор C5установи-те и соедините с корпусом рядом с конденсатором C4.

Перед установкой в прибор галетно-го переключателя SA1 смонтируйте на нём катушки индуктивности L1-L10 и резистор R1. Оси соседних катушек должны быть взаимно перпендикулярны, иначе не избежать их взаимного влияния. Особенно это касается низкочастотных диапазонов. Удобно чередовать катушки с аксиальными и радиальными выводами. Общий провод к галете SA1.1 подключите жгутом из десяти и более проводов МГТФ. Отдельным проводом соедините с общим проводом резистор R1 и подвижный контакт галеты SA1.2.

С помощью шприца с укороченной иглой нанесите на переднюю панель подкрашенным цапон-лаком все необходимые надписи. Разъём входа пилообразного напряжения XS2 установите на задней панели, чтобы исключить случайное подключение к нему. Туда же выведите шнур питания. Он дублирован контактами XT1.1 (минус) и XT1.2 (плюс), от которых можно питать другие измерительные приборы или настраиваемое устройство. Все лишние отверстия в корпусе закройте припаянными к нему стальными пластинами.

Собранный, согласно рекомендациям, прибор должен заработать сразу. Следует измерить постоянное напряжение на эмиттере транзистора VT4. При верхнем (по схеме) положении движка переменного резистора R18 оно не должно быть менее 2 В, иначе нужно уменьшить сопротивление резистора R13. Далее нужно проверить работу генератора на всех диапазонах. На УКВ при большой введённой ёмкости переменного конденсатора (если он включён) происходит срыв колебаний, что видно по снижению яркости свечения светодиода HL1.

Если переменный резистор R5 включён, как показано на схеме, то полоса перестройки на УКВ-диапазо-нах не превысит 15 МГц, и может потребоваться укладка этих диапазонов в пределы вещательных. Прежде всего сделайте это в диапазоне УКВ1 (65,9...74 МГц) с помощью подстроечного конденсатора C9 при разомкнутом выключателе SA2. Далее переведите переключатель SA1 в положение УКВ2 и, изменяя длину отрезка провода, служащего индуктивностью L11, добейтесь перекрытия вещательного диапазона 87,5...108 МГц. Если нужно сильно увеличить частоту, отрезок провода можно заменить полоской медной фольги или расплющенной оплёткой коаксиального кабеля. Пределы перестройки частоты варикапом можно значительно увеличить, если питать переменный резистор R5 напряжением со входа, а не с выхода интегрального стабилизатора DA1. Но это приведёт к заметному ухудшению стабильности частоты.

Регулировка детектора милливольтметра заключается в установке подстроечным резистором R17 напряжения 1010 мВ на подключённом к выходу детектора мультиметре при нулевом выходном напряжении генератора (движок переменного резистора R18 в нижнем по схеме положении). Далее, увеличив переменным резистором размах выходного напряжения до 280 мВ (контролируют осциллографом), подстраивают R17 так, чтобы мультиметр показал 1100 мВ. Это соответствует эффективному значению выходного напряжения 100 мВ. Следует учитывать, что ВЧ-напряжение менее 20 мВ этим милливольтметром измерять нельзя (мёртвая зона), а при напряжении более 100 мВ его показания будут сильно завышенными.

Файл печатной платы в формате Sprint Layout 6.0 можно скачать .

Литература

1. Генератор сигналов высокочастотный GRG-450B. - URL: http://www.printsip.ru/ cgi/download/instr/GW_instek/generatori_ gw/grg-450b.pdf (26.09.15).

2. Коротковолновый ГИР (За рубежом). - Радио, 2006, № 11, с. 72, 73.


Дата публикации: 12.01.2016

Мнения читателей
  • alex286 / 17.10.2018 - 20:03
    В диапазонах КВ6, УКВ1 и УКВ2 предусмотрено отключение конденсатора переменной ёмкости выключателем SA2. Когда выключатель замкнут, частота устойчивой генерации не превышает 37 МГц.
  • alex286 / 15.10.2018 - 14:46
    В гугле забанили что-ли? Находится на раз, два.. Лять, как дети, все им дай, подай, да принеси..
  • Саша / 08.05.2018 - 14:23
    Не могу запустить генератор ниже 60 мгц
  • Кирилл / 10.08.2017 - 19:22
    Почему не написано для чего R5 SA2 C6 ??? Где ссылка на первоисточник? Возможно там более полное описание?

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 3.

Доброго дня уважаемые радиолюбители! На сегодняшнем занятии в Школе начинающего радиолюбителя мы закончим собирать функциональный генератор . Сегодня мы соберем печатную плату, припаяем все навесные детали, проверим работоспособность генератора и проведем его настройку с помощью специальной программы.

И так, представляю вам окончательный вариант моей печатной платы выполненной в программе, которую мы рассматривали на втором занятии – Sprint Layout :

Если вы не смогли сделать свой вариант платы (что-то не получилось, или было просто лень, к сожалению), то можете воспользоваться моим “шедевром”. Плата получилась размером 9х5,5 см и содержит две перемычки (две линии синего цвета). Здесь вы можете скачать этот вариант платы в формате Sprint Laiout^

(63.6 KiB, 3,488 hits)

После применения лазерно-утюжной технологии и травления, получилась такая заготовка:

Дорожки на этой плате выполнены шириной 0,8 мм, почти все контактные площадки диаметром 1,5 мм и почти все отверстия – сверлом 0,7 мм. Я думаю, что вам будет не очень сложно разобраться в этой плате, и так-же, в зависимости от используемых деталей (особенно подстроечные сопротивления), внести свои изменения. Сразу хочу сказать, что эта плата проверенна и при правильной пайке деталей схема начинает работать сразу.

Немного о функциональности и красоте платы. Беря в руки плату, изготовленную в заводских условиях, вы наверняка замечали как она удобно подготовлена для пайки деталей – и сверху и снизу нанесена белым цветом так называемая “шелкография”, на которой сразу видны и наименование деталей и их посадочные места, что очень облегчает жизнь при пайке радиоэлементов. Видя посадочное место радиоэлемента, никогда не ошибешься в какие отверстия его вставлять, остается только глянуть на схему, выбрать нужную деталь, вставить ее и припаять. Поэтому мы сегодня сделаем плату приближенную к заводской, т.е. нанесем шелкографию на слой со стороны деталей. Единственное, эта “шелкография” будет черного цвета. Процесс очень прост. Если, к примеру, мы пользуемся программой Sprint Layout, то выбираем при печати слой К1 (слой со стороны деталей), распечатываем его как и для самой платы (но только в зеркальном отображении), накладываем отпечаток на сторону платы, где нет фольги (со стороны деталей), центрируем его (а на просвет протравленной платы рисунок виден прилично) и применяя способ ЛУТ переносим тонер на текстолит. Процесс – как и при переносе тонера на медь, и любуемся результатом:

После высверливания отверстий, вы реально будете видеть схему расположения деталей на плате. А самое главное, что это не только для красоты платы (хотя, как я уже говорил, красивая плата – это залог хорошей и долгой работы собранной вами схемы), а главное – для облегчения дальнейшей пайки схемы. Затраченные десять минут на нанесение “шелкографии” заметно окупаются по времени при сборке схемы. Некоторые радиолюбители, после подготовки платы к пайке и нанесения такой “шелкографии”, покрывают слой со стороны деталей лаком, тем самым защищая “шелкографию” от стирания. Хочу отметить, что тонер на текстолите держится очень хорошо, а после пайки деталей вам придется растворителем удалять остатки канифоли с платы. Попадание растворителя на “шелкографию”, покрытую лаком, приводит к появлению белого налета, при удалении которого сходит и сама “шелкография” (это хорошо видно на фотографии, именно так я и делал), поэтому, я считаю, что использовать лак не обязательно. Кстати, все надписи, контура деталей выполнены при толщине линий 0,2 мм, и как видите, все это прекрасно переноситься на текстолит.

А вот так выглядит моя плата (без перемычек и навесных деталей):

Эта плата выглядела бы намного лучше, если бы я не покрывал ее лаком. Но а вы можете как всегда поэкспериментировать, и естественно, сделать лучше. Кроме того, у меня на плате установлены два конденсатора С4, нужного номинала (0,22 мкФ) у меня не оказалось и я заменил его двумя конденсаторами номиналом 0,1 мкФ соединив их параллельно.

Продолжаем. После того, как мы припаяли все детали на плату, припаиваем две перемычки, припаиваем с помощью отрезков монтажных проводов резисторы R7 и R10, переключатель S2. Переключатель S1 пока не припаиваем а делаем перемычку из провода, соединяя выводы 10 микросхемы ICL8038 и конденсатора С3 (т.е. подключаем диапазон 0,7 – 7 кГц), подаем питание с нашего (я надеюсь собранного) лабораторного блока питания на входы микросхемных стабилизаторов около 15 вольт постоянного напряжения

Теперь мы готовы к проверке и настройке нашего генератора. Как проверить работоспособность генератора. Очень просто. Подпаиваем к к выходам Х1 (1:1) и “общий” любой обыкновенный или пьезокерамический динамик (к примеру от китайских часов в будильнике). При подключении питания мы услышим звуковой сигнал. При изменении сопротивления R10 мы услышим как изменяется тональность сигнала на выходе, а при изменении сопротивления R7 – как изменяется громкость сигнала. Если у вас этого нет, то единственная причина в неправильной пайке радиоэлементов. Обязательно пройдитесь еще раз по схеме, устраните недостатки и все будет о,кей!

Будем считать, что этот этап изготовления генератора мы прошли. Если что-то не получается, или получается, но не так, обязательно задавайте свои вопросы в комментариях или на форуме. Вместе мы решим любую проблему.

Продолжаем. Вот так выглядит плата, подготовленная к настройке:

Что мы видим на этой картинке. Питание – черный “крокодил” на общий провод, красный “крокодил” на положительный вход стабилизатора, желтый “крокодил” – на отрицательный вход стабилизатора отрицательного напряжения. Припаянные переменные сопротивления R7 и R10, а также переключатель S2. С нашего лабораторного блока питания (вот где пригодился двухполярный источник питания) мы подаем на схему напряжение около 15-16 вольт, для того, чтобы нормально работали микросхемные стабилизаторы на 12 вольт.

Подключив питание на входы стабилизаторов (15-16 вольт) с помощью тестера проверяем напряжение на выходах стабилизаторов (±12 вольт). В зависимости от используемых стабилизаторов напряжения будет отличаться от ± 12 вольт, но близки к нему. Если у вас напряжения на выходах стабилизаторов несуразные (не соответствуют тому, что надо), то причина одна – плохой контакт с “массой”. Самое интересное, что даже отсутствие надежного контакта с “землей” не мешает работе генератора на динамик.

Ну а теперь нам осталось настроить наш генератор. Настройку мы будем проводить с помощью специальной программы – виртуальный осциллограф . В сети можно найти много программ имитирующих работу осциллографа на экране компьютера. Специально для этого занятия я проверил множество таких программ и остановил свой выбор на одной, которая, как мне кажется, наиболее лучше симулирует осциллограф – Virtins Multi-Instrument . Данная программа имеет в своем составе несколько подпрограмм – это и осциллограф, частотомер, анализатор спектра, генератор, и кроме того имеется русский интерфейс:

Здесь вы можете скачать данную программу:

(41.7 MiB, 5,238 hits)

Программа проста в использовании, а для настройки нашего генератора потребуется лищь минимальное знание ее функций:

Для того чтобы настроить наш генератор нам необходимо подключиться к компьютеру через звуковую карту. Подсоединиться можно через линейный вход (есть не у всех компьютеров) или к разъему “микрофон” (есть на всех компьютерах). Для этого нам необходимо взять какие-либо старые, ненужные наушники от телефона или другого устройства, со штекером диаметром 3,5 мм, и разобрать их. После разборки припаиваем к штекеру два провода – как показано на фотографии:

После этого белый провод подпаиваем к “земле” а красный к контакту Х2 (1:10). Регулятор уровня сигнала R7 ставим в минимальное положение (обязательно, что-бы не спалить звуковую карту) и подключаем штекер к компьютеру. Запускаем программу, при этом в рабочем окне мы увидим две запущенные программы – осциллограф и анализатор спектра. Анализатор спектра отключаем, выбираем на верхней панели “мультиметр” и запускаем его. Появится окошко, которое будет показывать частоту нашего сигнала. С помощью резистора R10 устанавливаем частоту около 1 кГц, переключатель S2 ставим в положение “1” (синусоидальный сигнал). А затем, с помощью подстроечных резисторов R2, R4 и R5 настраиваем наш генератор. Сначала форму синусоидального сигнала резисторами R5 и R4, добиваясь на экране формы сигнала в виде синусоиды, а затем, переключив S2 в положение “3” (прямоугольный сигнал), резистором R2 добиваемся симметрии сигнала. Как это реально выглядит, вы можете посмотреть на коротком видео:

После проведенных действий и настройки генератора, припаиваем к нему переключатель S1 (предварительно удалив перемычку) и собираем всю конструкцию в готовом или самодельном (смотри занятие по сборке блока питания) корпусе.

Будем считать, что мы успешно со всем справились, и в нашем радиолюбительском хозяйстве появился новый прибор – функциональный генератор . Оснащать его частотомером мы пока не будем (нет подходящей схемы) а будем его использовать в таком виде, учитывая, что нужную нам частоту мы можем выставить с помощью программы Virtins Multi-Instrument . Частотомер для генератора мы будем собирать на микроконтроллере, в разделе “Микроконтроллеры”.

Следующим нашим этапом в познании и практическом претворении в жизнь радиолюбительских устройств будет сборка светомузыкальной установки на светодиодах.

При повторении данной конструкции был случай, когда не удалось добиться правильной формы прямоугольных импульсов. Почему возникла такая проблема сказать трудно, возможно из-за такой работы микросхемы. Решить проблему очень легко. Для этого необходимо применить триггер Шмитта на микросхеме К561(КР1561)ТЛ1 по нижеприведенной схеме. Данная схема позволяет преобразовывать напряжение любой формы в прямоугольные импульсы с очень хорошей формы. Схема включается в разрыв проводника, идущего от вывода 9 микросхемы, вместо конденсатора С6.

Делаем несложный функциональный генератор своими руками.

Каждый радиолюбитель, который изготавливает или повторяет радиоэлектронные устройства, рано или поздно сталкивается с необходимостью настройки и наладки собранных изделий.

В свою очередь, процесс настройки предполагает наличие соответствующих измерительных приборов. В наше время, безусловно, можно приобрести измерительные приборы промышленного изготовления, благо сейчас приборы стали широкодоступны.

Но, несложные приборы можно изготовить самостоятельно.

Вашему вниманию предлагается описание несложного функционального генератора, изготовленного мною много лет тому назад, который до сих пор находится в отличном работоспособном состоянии.

Функциональный генератор, это генератор колебаний, работающий в низкочастотном диапазоне (1Гц-100 кГц) и формирующий на выходе сигналы синусоидальной, прямоугольной и треугольной формы. Описание этого функционального генератора было опубликовано в журнале Радио №6 за 1992 год.

Данный генератор значительно упрощает ремонт узлов и устройств низкочастотной аппаратуры. Внешний вид изготовленного мною функционального генератора.

На переднюю панель выведены:

Переключатель диапазонов генератора;

Переключатель режима работы генератора;

Ручка установки частоты генерируемых колебаний;

Регулятор уровня выходного напряжения;

Выключатель питания;

Гнездо выхода;

Предлагаемый функциональный генератор имеет следующие технические характеристики:

— диапазон генерируемых частот 1 Гц-100 кГц, разделен на пять поддиапазонов:

1) 1 Гц-10 Гц;

2) 10 Гц-100 Гц;

3) 100 Гц-1 кГц;

4) 1 кГц-10 кГц;

5) 10 кГц-100 кГц;

— максимальный размах сигналов прямоугольный формы -10 В;

— максимальный размах сигналов треугольной формы -6 В;

— максимальный размах сигналов синусоидальной формы -3,3 В;

Краткое описание схемы функционального генератора.

Принципиальная схема функционального генератора представлена ниже:

Задающий генератор собран на элементах DD1.1, DD1.2, DD1.3. На выходе элемента DD1.1 формируются треугольные импульсы. Прямоугольные импульсы формируются узлом на элементах DD1.2, DD1.3.

Преобразователь сигналов треугольной формы в синусоидальную собран на элементах VD1-VD6 и R10-R12.

Данный генератор обеспечивает получение «белого шума», источником которого является стабилитрон VD9. Напряжение «белого шума» усиливается до уровня 5В усилителем на элементе DD1.4.

Частота генерируемых колебаний устанавливается переменным резистором R3.

Для контроля частоты генерируемых функциональным генератором колебаний мною был применен частотомер, описание которого опубликовано в брошюре «В помощь радиолюбителю» №99. Схема частотомера была немного доработана: добавлен еще один разряд индикации и заменены люминесцентные индикаторы типа ИВ-3 на светодиодные типа АЛС314А. Частотомер размещен в одном корпусе с функциональным генератором.

Принципиальная схема частотомера, с учетом вышеизложенных доработок приведена ниже:

Конечно же, в наши дни «городить» такой частотомер нет никакой необходимости. Все гораздо проще и компактнее получается на микроконтроллерах. Схема предоставлена в ознакомительных целях.

Настало время проверить работоспособность генератора.

Форму и размах колебаний проверяем при помощи осциллографа.

Синусоидальные колебания . Синусоида чистая, частота около 1000 Гц. Параметры каналов вертикального и горизонтального отклонения указаны на фото.

Треугольные колебания также имеют правильную форму:

Прямоугольные колебания выглядят не менее достойно. Меандр ровный и четкий, без выбросов, с крутыми фронтами.

Реальные технические характеристики функционального генератора практически соответствуют заявленным в авторской статье.

Небольшое видео, демонстрирующее работу цифровой шкалы функционального генератора:


Наглядно видно, как происходит подсчет количества импульсов.

Я хотел создать функциональный генератор, генерирующий аудио сигналы для тестирования эффектов / усилителей; а также TTL сигналов синхронизации для цифровых схем. Поскольку обычно новые функциональные генераторы стоят около £20, я решил, что смогу сделать такой генератор самостоятельно.

Для данного проекта я использовал интегральную схему XR-2206 для генерирования колебательного сигнала. Интегральная схема может создавать сигнал в виде синусоидальных и треугольных импульсов с заданной амплитудой и частотой, а также TTL сигнал синхронизации при напряжении 5 В. Частотный диапазон колеблется от 20 Гц до 300 кГц – поэтому данный функциональный генератор будет охватывать весь слышимый человеком диапазон частот.

Интегральная схема имеет входы для контроля частот всех сигналов, а также амплитуды синусоидального / треугольного сигнала.

Шаг 1: Список компонентов

Основные компоненты для функционального генератора

  • (2x) 1мкФ электролитические конденсаторы
  • (1x) 100нФ керамический / полиэфирный конденсатор
  • (1x) 10нФ керамический / полиэфирный конденсатор
  • (1x) 1нФ керамический / полиэфирный конденсатор
  • (1x) 10Ом резистор
  • (2x) 1КОм резисторы
  • (1x) 3 КОм резистор
  • (2x) 5 КОм резисторы
  • (1x) 10 КОм резистор
  • (1x) 30 КОм резистор
  • (2x) 10 КОм потенциометры, устанавливаемые на панели
  • (1x) 100 КОм потенциометр, устанавливаемый на панели
  • (2x) 25 КОм подстрочные резисторы
  • (1x) 4 поворотный переключатель положения
  • (1x) однополюсный перекидной выключатель
  • (5x) 4мм гнезда типа "банан"
  • (1x) 16 штыревое DIL гнездо
  • (1x) ИС XR2206 - функциональный генератор
  • Корпус устройства
  • Макетная плата
  • Провода с многожильным проводником

Дополнительные компоненты для опционального источника питания

  • (1x) 15В AC трансформатор
  • (1x) IEC ввод электропитания
  • (1x) двухполюсный выключатель
  • (1x) 1A предохранитель и держатель
  • (1x) 1A мостовой выпрямитель или (4x) диоды 1N4001
  • (1x) 2200мкФ электролитический конденсатор
  • (1x) 10мкФ электролитический конденсатор
  • (1x) 100нФ полиэфирный конденсатор
  • (1x) 220Ом резистор
  • (1x) 5мм светодиод с держателем
  • (1x) ИС 7812 - стабилизатор напряжения
  • Гибкая проволока для подключения электропитания

Шаг 2: Электрическая схема

Для данного проекта используется многофункциональная генераторная ИС – это обеспечило простоту конструкцию, а также малое количество компонентов. Я фактически использовал две микросхемы, которые соответствовали спецификации - Exar XR2206 и Maxim MAX038. В заключении я решил использовать XR2206 – эту микросхему легче и дешевле приобрести.

Частота регулируется двумя потенциометрами – один для грубой настройки и другой для точной. Важно, чтобы для этой цели вы использовали потенциометры хорошего качества, в противном случае будет очень трудно установить точную частоту, и она будет колебаться. С другой стороны вы может заменить два переменных резистора 10-оборотным потенциометром величиной 100 Ком для большей точности.

Я не использовал печатную плату для данного проекта, поскольку спаивал по мере возможности, однако вы можете увидеть, что различные компоненты располагаются в разных частях платы. Фильтр питания и делитель напряжения для контроля амплитуды располагаются слева, конденсаторы для частотного диапазона располагаются в нижней центральной части. Разделив монтажную схему на несколько подсекций легче разрабатывать конструкцию печатной платы.

Данная схема разработана для работы от однополярного источника электропитания напряжением 12 В DC. Подходящий источник питания показан на следующем шаге.

Шаг 3: Источник питания

**Данная часть схемы включает работу с высоковольтным источником переменного тока. Если вы сомневаетесь касательно работы с потенциально-смертельным уровнем напряжения, ПРОПУСТИТЕ ДАННУЮ ЧАСТЬ ПРОЕКТА. Вместо этого вы можете использовать AC адаптер питания. Я не несу ответственность за повреждения или травмы, которые могут возникнуть при работе с данным проектом.**

Я решил использовать внутренний источник электропитания для функционального генератора, чтобы не искать модули AC питания. Это означает, что мне не нужно каждый раз повторно калибровать функциональный генератор при запуске от другого напряжения питания, поскольку трансформатор внутри корпуса будет всегда выдавать на выходе одно и то же напряжение.

Убедитесь в том, что предохранитель 1А разрывает токоведущий проводник электропитания. При использовании металлического корпуса убедитесь, что он подсоединен к заземляющему проводнику электропитания. Я разместил все цепи электропитания на своей собственной плате вдали от основной схемы электропитания, с целью облегчения конструкции и снижения интерференции. Убедитесь, что все токоведущие проводники подключены со стороны первичной обмотки трансформатора.

Шаг 4: Корпус

Я разместил все электронные компоненты в пластиковый приборный корпус. Я использовал корпус, показанный на веб-сайте http://www.evatron.com, хотя существует множество аналогичных вариантов. Я использовал маркер для нанесения меток на коннекторы и элементы управления.

Шаг 5: Калибровка

Для калибровки функционального генератора необходимо наличие осциллографа.

Очень важно правильно провести калибровку схемы, чтобы получить на выходе чистый колебательный сигнал. Начните с выбора синусоидального сигнала, выключив переключатель синусоидального / треугольного сигнала. Установите частотный диапазон на второй диапазон, и амплитуду на максимум.

Подсоедините щуп осциллографа на выход синусоидального / треугольного сигнала и установите ваш осциллограф на связь по переменному току – колебательный сигнал имеет DC смещение, другими словами вы не увидите полную волну на экране.

Установите подстрочный резистор в среднее положение и отрегулируйте смещение построечного резистора, пока синусоидальный сигнал на осциллографе не будет четко отображаться. С помощью устройства для контроля искажения продолжите регулировку симметрии для дальнейшего снижения искажения. Вы должны получить чистый синусоидальный сигнал, аналогичный показанному на диаграмме.

Сигнал в виде треугольных импульсов имеет большую амплитуду, чем синусоидальный сигнал, поэтому он будет обрезаться при полной амплитуде, в то время как синусоидальный сигнал не будет. Это, к сожалению, является внутренним дефектом схемы, однако не является большим недостатком, поскольку вы можете вручную установить амплитуду. Прямоугольный сигнал фиксируется при напряжении 5 В и не нуждается в регулировке.

Шаг 6: Модификации и обновления

Существует возможность вносить множество изменений в данный проект для его адаптации в соответствие с вашими особыми требованиями. Также можно увеличить максимальный частотный диапазон, добавив 5-ое положение на поворотный переключатель и подсоединив емкость 100 пФ, аналогично другим подключаемым компонентам. Это поднимет макс. частоту до величины 3 МГц (при данном значении действительно только использовать сигнал прямоугольной формы).

Вы можете использовать также поворотный переключатель для выбора формы сигнала, однако для его получения потребуется грамотное подключение, а также замена переключателя синусоидальный/треугольный сигнал.

Я надеюсь, вы найдете данный проект полезным – он оказался очень кстати при тестировании аудио схем.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Функциональный генератор XR2206 1 В блокнот
1 мкФ 2 В блокнот
Электролитический конденсатор 10 мкФ 1 В блокнот
Конденсатор 100 нФ 1 керамический / полиэфирный В блокнот
Конденсатор 10 нФ 1 керамический / полиэфирный В блокнот
Конденсатор 1 нФ 1 керамический / полиэфирный В блокнот
Резистор

10 Ом

1 В блокнот
Резистор

1 кОм

2 В блокнот
Резистор

3 кОм

1 В блокнот
Резистор

5 кОм

2 В блокнот
Резистор

10 кОм

1 В блокнот
Резистор

30 кОм

1 В блокнот
Переменный резистор 10 кОм 1 В блокнот
Переменный резистор 100 кОм 1 В блокнот
Подстроечный резистор 25 кОм 2 В блокнот
Переключатель положения 1 4 поворотный В блокнот
Выключатель 1 однополюсный перекидной В блокнот
4мм гнезда типа "банан" 5 В блокнот
DIL гнездо 1 16 штыревое В блокнот
Линейный регулятор

UA7812

1 В блокнот
Выпрямительный диод

Способный одновременно генерировать сигналы прямоугольной и пилообразной формы, обычно состоит из двух частей (рис. 36.1):

♦ неинвертирующего триггера Шмитта на микросхеме DA1;

♦ интегратора на микросхеме DA2.

При С 1=4,7 нФ частота генерации - 30 кГц, при 0=47 нФ -

20 Гц. Напряжение питания генератора может варьироваться в пределах 4,5-18 В.

Учитывая высокую актуальность функциональных генераторов, были созданы специализированные микросхемы таких генераторов. Примером является ICL8038 фирмы Harris Semiconductor.

Напряжение питания ±(5-15) В при двуполярном питании или 10-30 В - при однополярном. Потребляемый микросхемой ток не превышает 20 мА (номинальный - 12 мА) при напряжении питания ±10 В. Амплитуда выходного напряжения треугольной формы на сопротивлении нагрузки 100 кОм достигает 1/3 от напряжения питания, для сигнала синусоидальной формы - до 0,22 от напряжения питания.

Варианты подключения внешних элементов регулировки режима работы микросхемы ICL8038 приведены на рис. 36.6.

При использовании микросхемы ICL8038 (рис. 36.7) удобно

Рис. 36.6. Варианты подключения резистивных элементов к микросхеме ICL8038

Рис. 36.7. Вариант включения микросхемы ICL8038 с частотной модуляцией генерируемых сигналов

осуществлять частотную модуляцию генерируемых сигналов. Используя эту особенность микросхемы несложно создать сигналов прямоугольной, треугольной и синусоидальной формы, одновременно управляемых уровнем внешнего напряжения.

Для уменьшения искажений сигнала синусоидальной формы применяют регулировки, предусмотренные схемным решением, представленным на рис. 36.8.

Рис. 36.8. включения микросхемы ICL8038 с минимизацией искажения сигнала синусоидальной формы

Для того чтобы повысить нагрузочную способность генератора используют схему, показанную на рис. 36.9. Использован обычный буферный каскад, который можно использовать для каждого из выходов . нагрузки определяется выбором

микросхемы ОУ; для приведенного случая нагрузки не должно быть менее 1 кОм.

Рис. 36.9. на микросхеме ICL8038 с повышенной нагрузочной способностью для сигнала синусоидальной формы

Рис. 36Л0. на микросхеме ICL8038 с регулировкой частоты от 20 Гц до 20 кГц

Практическая широкодиапазонного , перекрывающего весь диапазон звуковых частот, приведена на рис. 36.10. Потенциометром R7 минимизируют искажения сигнала синусоидальной формы. R3 предназначен для регулировки соотношения импульс/ пауза (или симметрии) генерируемых сигналов. Потенциометром R10 регулируют частоту генерируемых сигналов.

Аддитивный формирователь сигналов треугольной формы

Электрические сигналы треугольной формы обычно получают при использовании зарядно-разрядных процессов в RC-цепочках. В работах описан и проанализирован принцип формирования сигналов треугольной формы путем противофазного сложения выпрямленных с использованием двухполупериодных выпрямителей сигналов синусоидальной формы, сдвинутых между собой на угол 90°. Ниже приведен вариант практической реализации перестраиваемого по частоте генератора сигналов треугольной формы, использующий данный принцип синтеза.

DA1-DA3 собран LR- сигналов синусоидальной формы, с выходов которого снимаются сдвинутые по фазе на угол 90° сигналы (точки А и В). Эти сигналы подаются на входы двух прецизионных выпрямителей, выполненных DA4, DA5 и DA6, DA7, соответственно. Сигналы с выходов выпрямителей (точки С и D) смешиваются на резистивном сумматоре-делителе напряжения R13, R15, R16 (точка Е). Выходной сигнал (точка Е) имеет треугольную форму с отклонением от линейности до 3 %.

Рабочая частота генератора определяется номиналами частотозадающих цепей - индуктивностей LI, L2, сдвоенного потенциометра R9, R10 и резисторов R7, R8. Для указанных номиналов диапазон частоты перестройки составляет 3300-4000 Гц.

Ступенчато изменить частотный диапазон работы можно переключением катушек индуктивности LI, L2. При расширении диапазона перестройки путем дальнейшего изменения соотношения элементов

Рис. 36.11. беземкостного перестраиваемого генератора сигналов треугольной формы

R7/R9=R8/R10 становится заметной выраженная зависимость амплитуды выходного сигнала от частоты. Для исключения этого недостатка необходимо либо сузить диапазон перестройки генератора, либо использовать промежуточные усилители с автоматической регулировкой усиления.

Инверсного построения

При создании функциональных генераторов традиционно используют прямоугольных импульсов, к выходу которого подключают формирователь треугольного напряжения, основанный на зарядно-разрядных процессах. Затем сигнал треугольной формы преобразуют в подобие синусоидального, выделяя из нее первую гармонику . Недостатки таких схемных решений очевидны: это явно выраженная нелинейность зарядноразрядных процессов, особенно заметная при перестройке частоты генератора и заметные искажения синусоидального сигнала в результате некачественной фильтрации высших гармоник сложного сигнала.

С. И. Семенова - прецизионные двухполупериодные выпрямители (микросхемы DA4, DA5 и DA9, DA10), выходные сигналы которых складываются в противофазе, формируя тем самым сигнал треугольной формы. Сигнал треугольной формы поступает затем на схему формирования биполярных импульсов прямоугольной формы (микросхемы DA6-DA8).

Диаграммы сигналов в различных точках устройства показаны на рис. 36.12.

Работает в диапазоне частот: для сигналов синусоидальной формы - 50-500 Гц, для сигналов треугольной и прямоугольной формы (с удвоением исходной частоты) - 100-1000 Гц. Рабочую частоту плавно меняют перестройкой сдвоенного потенциометра R9, R10. Ступенчатое переключение диапазона генерируемых частот вплоть до субгерцовых может быть обеспечено переключением частотозадающих конденсаторов С2 и СЗ. Так, при уменьшении емкостей конденсаторов С2 и СЗ в 10 раз, т. е. до 3,3 нФ, диапазон генерируемых частот составляет 1000-10000 Гц по пилообразному и прямоугольному сигналам; по синусоидальному - 500-5000 Гц.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то