Обмен веществ энергетический окислительное фосфорилирование. Процесс окислительного фосфорилирования его биологическая роль. Липопротеины очень низкой плотности

Принадлежит ведущая роль в образовании энергии. В результате окисления углеводов, жиров и белков образуются восстановительные эквиваленты (электроны и атомы водорода), которые переносятся по дыхательной цепи. Высвобождающаяся при этом энергия переходит в энергию электрохимического градиента для протонов на внутренней мембране митохондрий, а та, в свою очередь, используется для синтеза АТФ . Этот процесс называется окислительным фосфорилированием.

Образовавшиеся в результате гликолиза триозы, и в первую очередь пировиноградная кислота , вовлекаются в дальнейшее окисление, происходящеее в митохондриях.

При этом используется энергия расщепления всех химических связей, что приводит к выделению CO2 , потреблению кислорода и синтезу большого количества АТФ. Эти процессы связаны с окислительным циклом трикарбоновых кислот и дыхательной цепью переноса электронов, где происходят фосфорилирование АДФ и синтез клеточного "топлива" - молекул АТФ. В цикле трикарбоновых кислот электроны, освободившиеся при окислении, переносятся на акцепторные молекулы коферментов ( НАД - никотинамид адениндинуклеотид), которые вовлекают их далее в цепь переноса электронов ( ЭТЦ - электронтранспортную цепь). Эти события внутри митохондрий происходят в их матриксе . Остальные реакции, связанные с дальнейшим переносом электронов и синтезом АТФ, связаны с внутренней митохондриальной мембраной , с кристами митохондрий. Освободившиеся в процессе окисления в цикле трикарбоновых кислот электроны, акцептированные на коферментах, переносятся затем в дыхательную цепь (цепь переноса электронов), где они соединяются с молекулярным кислородом, образуя молекулы воды. Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю митохондриальную мембрану, и является главной системой превращения энергии в митохондриях. Здесь происходят последовательное окисление и восстановление элементов дыхательной цепи, в результате чего высвобождается небольшими порциями энергия. За счет этой энергии в трех точках цепи из АДФ и фосфата образуется АТФ. Поэтому говорят, что окисление (перенос электронов) сопряжено с фосфорилированием (АДФ + Фн = АТФ), то есть происходит процесс окислительного фосфорилирования.

При переносе электронов в митохондриальной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисления на перемещение протонов (положительных зарядов) через мембрану, из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране : положительные заряды преобладают в межмембранном пространстве, а отрицательные - со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс, при этом превращает одну форму энергии в другую: образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с синтетическим - с фосфорилированием АДФ. Пока происходит окисление субстратов, пока происходит перекачка протонов через внутреннюю митохондриальную мембрану - идет сопряженный с этим синтез АТФ, то есть окислительное фосфорилирование (

14.1.1. В пируватдегидрогеназной реакции и в цикле Кребса происходит дегидрирование (окисление) субстратов (пируват, изоцитрат, α-кетоглутарат, сукцинат, малат). В результате этих реакций образуются НАДН и ФАДН2 . Эти восстановленные формы коферментов окисляются в митохондриальной дыхательной цепи. Окисление НАДН и ФАДН2 , протекающее сопряжённо с синтезом АТФ из АДФ и Н3 РО4 называется окислительным фосфорилированием .

Схема строения митохондрии показана на рисунке 14.1. Митохондрии представляют собой внутриклеточные органеллы, имеющие две мембраны: наружную (1) и внутреннюю (2). Внутренняя митохондриальная мембрана образует многочисленные складки - кристы (3). Пространство, ограниченное внутренней митохондриальной мембраной, носит название матрикс (4), пространство, ограниченное наружной и внутренней мембранами, - межмембранное пространство (5).

Рисунок 14.1. Схема строения митохондрии.

14.1.2. Дыхательная цепь - последовательная цепь ферментов, осуществляющая перенос ионов водорода и электронов от окисляемых субстратов к молекулярному кислороду - конечному акцептору водорода. В ходе этих реакций выделение энергии происходит постепенно, небольшими порциями, и она может быть аккумулирована в форме АТФ. Локализация ферментов дыхательной цепи - внутренняя митохондриальная мембрана.

Дыхательная цепь включает четыре мультиферментных комплекса (рисунок 14.2).

Рисунок 14.2. Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы водорода: флавинмононуклеотид и железосерные белки). II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки). III. KoQН2 -цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1 , железосерные белки). IV. Цитохром с-оксидаза (содержит акцепторы электронов: цитохромы а и а3 , ионы меди Cu2+ ).

14.1.3. В качестве промежуточных переносчиков электронов выступают убихинон (коэнзим Q) и цитохром с.

Убихинон (KoQ) - жирорастворимое витаминоподобное вещество, способен легко диффундировать в гидрофобной фазе внутренней мембраны митохондрий. Биологическая роль коэнзима Q - перенос электронов в дыхательной цепи от флавопротеинов (комплексы I и II) к цитохромам (комплекс III).

Цитохром с - сложный белок, хромопротеин, простетическая группа которого - гем - содержит железо с переменной валентностью (Fe3+ в окисленной форме и Fe2+ в восстановленной форме). Цитохром с является водорастворимым соединением и располагается на периферии внутренней митохондриальной мембраны в гидрофильной фазе. Биологическая роль цитохрома с - перенос электронов в дыхательной цепи от комплекса III к комплексу IV.

14.1.4. Промежуточные переносчики электронов в дыхательной цепи расположены в соответствии с их окислительно-восстановительными потенциалами. В этой последовательности способность отдавать электроны (окисляться) убывает, а способность присоединять электроны (восстанавливаться) возрастает. Наибольшей способности отдавать электроны обладает НАДН, наибольшей способностью присоединять электроны - молекулярный кислород.

На рисунке 14.3 представлено строение реакционноспособного участка некоторых промежуточных переносчиков протонов и электронов в окисленной и восстановленной форме и их взаимопревращение.



Рисунок 14.3. Взаимопревращения окисленных и восстановленных форм промежуточных переносчиков электронов и протонов.

14.1.5. Механизм синтеза АТФ описывает хемиосмотическая теория (автор - П. Митчелл). Согласно этой теории, компоненты дыхательной цепи, расположенные во внутренней митохондриальной мембране, в ходе переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство. При этом наружная поверхность внутренней мембраны приобретает положительный заряд, а внутренняя - отрицательный, т.е. создаётся градиент концентрации протонов с более кислым значением рН снаружи. Так возникает трансмембранный потенциал (ΔµН+ ). Существует три участка дыхательной цепи, на которых он образуется. Эти участки соответствуют I, III и IV комплексам цепи переноса электронов (рисунок 14.4).


Рисунок 14.4. Расположение ферментов дыхательной цепи и АТФ-синтетазы во внутренней мембране митохондрий.

Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+ -зависимой АТФ-синтетазой (Н+ -АТФ-азой). Фермент состоит из двух частей (см. рисунок 10.4): водорастворимой каталитической части (F1 ) и погружённого в мембрану протонного канала (F0 ). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.

14.1.6. Энергия, аккумулированная в форме АТФ, используется в организме для обеспечения разнообразных биохимических и физиологических процессов. Запомните основные примеры использования энергии АТФ:

1) синтез сложных химических веществ из более простых (реакции анаболизма); 2) сокращение мышц (механическая работа); 3) образование трансмембранных биопотенциалов; 4) активный транспорт веществ через биологические мембраны.

Молекулы НАДН и ФАДН 2 , образуемые в реакциях окисления углеводов, жирных кислот, спиртов и аминокислот, далее поступают в митохондрии, где ферментами дыхательной цепи осуществляется процесс окислительного фосфорилирования .

Окислительное фосфорилирование

Окислительное фосфорилирование – это многоэтапный процесс, происходящий во внутренней мембране митохондрий и заключающийся в окислении восстановленных эквивалентов (НАДН и ФАДН 2) ферментами дыхательной цепи и сопровождающийся синтезом АТФ.

Впервые механизм окислительного фосфорилирования был предложен Питером Митчеллом. Согласно этой гипотезе перенос электронов , происходящий во внутренней митохондриальной мембране, вызывает выкачивание ионов Н + из матрикса митохондрий в межмембранное пространство. Это создает градиент концентрации ионов Н + между цитозолем и замкнутым внутримитохондриальным пространством. Ионы водорода в норме способны возвращаться в матрикс митохондрий только одним способом – через специальный фермент, образующий АТФ – АТФ-синтазу .

По современным представлениям внутренняя митохондриальная мембрана содержит ряд мультиферментных комплексов, включающих множество ферментов. Эти ферменты называют дыхательными ферментами , а последовательность их расположения в мембране – дыхательной цепью или электрон-транспортной цепью (англ. electron transport chain ).

В целом работа дыхательной цепи заключается в следующем:

  1. Образующиеся в реакциях катаболизма НАДН и ФАДН 2 передают атомы водорода (т.е. протоны водорода и электроны) на ферменты дыхательной цепи.
  2. Электроны движутся по ферментам дыхательной цепи и теряют энергию.
  3. Эта энергия используется на выкачивание протонов Н + из матрикса в межмембранное пространство.
  4. В конце дыхательной цепи электроны попадают на кислород и восстанавливают его до воды.
  5. Протоны Н + стремятся обратно в матрикс и проходят через АТФ-синтазу.
  6. При этом они теряют энергию, которая используется для синтеза АТФ.

Оксидазный путь потребления кислорода протекает в митохондриях, потребляет 90% О 2 и обеспечивает процесс окислительного фосфорилирования.

Окислительным фосфорилированием называют синтез АТФ из АДФ и Н 3 РО 4 за счет энергии движении электронов по дыхательной цепи.

Окислительное фосфорилирование является основным источником АТФ в аэробных клетках.

Хемиосмотическая теория Митчелла

Для объяснения механизма окислительного фосфорилирования в 1961 году Митчеллом была предложена хемиосмотическая теория, которая включала четыре независимых постулата, касавшиеся функции митохондрий:

    Внутренняя мембрана митохондрий непроницаема для всех ионов.

    Она содержит ряд белков-переносчиков, осуществляющих транспорт необходимых метаболитов и неорганических ионов.

    При прохождении электронов по дыхательной цепи внутренней мембраны происходит перемещение Н + из матрикса в межмембранное пространство.

    При достаточно большом протонном градиенте протоны начи­нают «течь» через АТФ-синтетазу, что сопровож­дается синтезом АТФ.

Современные представления о механизме окислительного фосфорилирования

В настоящее время открыты все основные компоненты окислительного фосфорилирования, изучено их строение и свойства. Открыты основные принципы окислительного фосфорилирования, регуляция и механизмы некоторых стадий.

Механизм окислительного фосфорилирования

Окислительное фосфорилирование состоит из процессов окисления ифосфорилирования , которые между собой сопряжены.

Процесс окисления

Процесс окисления происходит при движении электронов по дыхательной цепи от субстратов тканевого дыхания на кислород. Дыхательная цепь окислительного фосфорилирования состоит из 4 белковых комплексов, встроенных во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами.

Комплекс I – НАДН 2 дегидрогеназный комплекс самый большой из дыхательных ферментных комплексов – имеет молекулярную массу свыше 800КДа, состоит из более 22 полипептидных цепей, в качестве коферментов содержит ФМН и 5 железо-серных (Fe 2 S 2 и Fe 4 S 4) белков.

Комплекс II – СДГ . В качестве коферментов содержит ФАД и железо-серный белок.

Комплекс III – Комплекс b - c 1 (фермент QH 2 ДГ) , имеет молекулярную массу 500КДа, состоит из 8 полипептидных цепей, и вероятно существует в виде димера. Каждый мономер содержит 3 гема, связанных с цитохромами b 562 , b 566 , с 1 , и железо-серный белок.

Комплекс IV – Цитохромоксидазный комплекс имеет молекулярную массу 300КДа, состоит из 8 полипептидных цепей, существует в виде димера. Каждый мономер содержит 2 цитохрома (а и а 3) и 2 атома меди.

Коэнзим Q (убихинон). Липид, радикал которого у млекопитающих образован 10 изопреноидными единицами (Q 10). Убихинон переносит по 2Н + и 2е - .

убихинон ↔ семихинон ↔ гидрохинон

Цитохром с . Периферический водорастворимый мембранный белок с массой 12,5КДа, содержит 1 полипептидную цепь из 100 АК, и молекулу гема.

Молекулярные соотношения между компонентами дыхательной цепи отличаются в разных тканях. Например, в миокарде, на 1 молекулу НАДН 2 дегидрогеназного комплекса приходиться 3 молекулы комплекса b-c 1 , 7 молекул цитохромоксидазного комплекса, 9 молекул цитохрома С и 50 молекул убихинона.

Электрохимический потенциал. Компоненты дыхательной цепи располагаются в мембране в порядке повышения их редокс-потенциала. При переходе е - от комплекса с низким редокс-потенциалом к комплексу с более высоким редокс-потенциалом происходит выделение свободной энергии. При окислении 1 НАДН 2 выделяется 220 кДж/моль свободной энергии.

I, III и IV комплексы дыхательной цепи используют 65-70% этой свободной энергии для переноса Н + из матрикса митохондрий в межмембранное пространство, 30-35% свободной энергии рассеивается в виде тепла.

Этапы движения е - по дыхательной цепи

    2е - от НАДН 2 , проходят через I комплекс (ФМН→SFe белок) на КоQ, высвобождаемая при этом энергия обеспечивает перекачку Н + (механизм переноса Н + неизвестен).

    КоQ с 2е - забирает у воды 2Н + из матрикса и превращается в КоQН 2 (восстановление КоQ проходит также с участием комплекса II).

    КоQН 2 переносит 2е - на комплекс III, а 2Н + в межмембранное пространство.

    Цитохром С переносит е - c III комплекса на IV комплекс.

    IV комплекс сбрасывает е - на О 2 , высвобождаемая при этом энергия обеспечивает перекачку Н + (механизм переноса Н + неизвестен).

При переносе Н + из матрикса в межмембранное пространство на внутренней мембране создается осмотический градиент протонов ∆рН = 60 мВ (при ∆рН=1) (в матриксе рН выше, чем в цитозоле). Так как каждый Н + несет положительный заряд, на внутренней мембране также появляется разность потенциалов ∆V=160мВ, внутренняя сторона мембраны заряжается отрицательно, внешняя – положительно.

В сумме осмотический градиент протонов и разность потенциалов образуют электрохимический потенциал , который в типичной клетке составляет около 60+160=220 мВ.

Механизм переноса Н + через мембрану до конца не изучен. Вероятно, у разных компонентов дыхательной цепи существуют разные механизмы сопряжения транспорта е - с перемещением Н + .

Образовавшийся на внутренней мембране митохондрий электрохимический потенциал используется для:

    фосфорилирования АДФ в АТФ;

    транспорта веществ через мембрану митохондрий;

    Синтез АТФ из АДФ и неорганического фосфата, сопряженный с переносом протонов и электронов по дыхательной цепи от субстратов к кислороду, называется окислительным фосфорилированием .

    Для количественного выражения окислительного фосфорилирования введен коэффициент окислительного фосфорилирования, который представляет собой отношение числа молекул неорганического фосфата, перешедших в состав АТФ в процессе дыхания, на каждый поглощенный атом кислорода . Отношение Р/О для полной дыхательной цепи равно 3, для укороченной – 2.

    Энергия окисления, достаточная для образования молекулы АТФ выделяется в ЦПЭ в следующих стадиях: 1) НАД - ФМН (НАДН-дегидрогеназа); 2) цит b - цит с (убихинол- цитохром с редуктаза); 3) цит а - 1/2 О 2 (цитохром с -оксидаза). На этих стадиях изменения ОВП превышают 0,22 В, что достаточно для образования макроэргической связи АТФ (>30,2 кДж/моль). Уменьшение свободной энергии, сопровождающее перенос протонов и электронов на кислород в результате одного дегидрирования, составляет примерно 220 кДж/моль. При этом на синтез АТФ в полной дыхательной цепи может быть израсходовано 30,2×3=90,6 кДж/моль. Отсюда КПД ЦПЭ около 40%. Остальная энергия рассеивается в виде тепла (поддержание температуры тела).

    Известны три основных гипотезы окислительного фосфорилирования.

    1. Механохимическая, или конформационная (Грин, Бойер, 60-е гг. ХХ в.). В процессе переноса протонов и электронов изменяется Конформация белков-ферментов. Они переходят в новое богатое энергией состояние, а затем при возвращении в исходную конформацию отдают энергию для синтеза АТФ. Гипотеза частично подтверждена: Еокисл.→ Еконформ. сдвигов → Е АТФ.

    2. Гипотеза химического сопряжения (Липман, Слейтер, Ленинджер, 30-40-е гг. ХХ в.). В сопряжении дыхания и фосфорилирования участвуют сопрягающие вещества, например вещество Х. Вещество «Х» акцептирует протоны и электроны от первого фермента в пункте сопряжения, взаимодействует с Н 3 РО 4 . В момент отдачи протонов и электронов второму ферменту пункта сопряжения связь становится макроэргической. Далее макроэрг передается на АДФ с образованием АТФ. До настоящего времени не выделены сопрягающие вещества.

    3. Хемиосмотическая гипотеза П.Митчелла (1961). По современным представлениям дыхание и фосфорилирование связаны между собой электрохимическим потенциалом (ЭХП) на внутренней мембране митохондрий. Для объяснения необходимы следующие понятия: а) внутренняя мембрана митохондрий непроницаема для Н + и ОН - ; б) во внутреннюю мембрану митохондрий вмонтирована АТФ-синтаза, катализирующая обратимую реакцию: АТФ + Н 2 О « АДФ + Рн. АТФ-синтаза состоит из следующих субъединиц: F 0 – гидрофобный сегмент из 13 полипептидных цепей, связанный с внутренней мембраной митохондрий; F 0 – это протонный канал, по которому в норме только могут перемещаться протоны через мембрану; F 1 – сопрягающий фактор, катализирующий синтез АТФ при перемещении протонов. В укороченной цепи переноса электронов отсутствует только первый этап, остальной перенос электронов такой же, как и в полной цепи; в) синтез АТФ осуществляется при перемещении протонов через АТФ-синтазу в направлении от ММП (межмембранное пространство) к матриксу.

    Суть окислительного фосфорилирования: за счет энергии переноса электронов в ЦПЭ (Е окисления) происходит движение протонов через мембрану в ММП и создается электрохимический потенциал (Е ЭХП). При возвращении протонов назад через АТФ-синтазу энергия ЭХП трансформируется в энергию АТФ – Е АТФ. Итак: Е Окисл. ® Е ЭХП ® Е АТФ.

    НАДН-КоQ редуктаза, цитохром редуктаза и цитохромоксидаза выталкивают протоны в межмембранное пространство. Протоны берутся из Н 2 О матрикса или за счет конформационных изменений в ферментах. Со стороны матрикса на мембране будет преобладать отрицательный заряд (избыток ОН -), а со стороны ММП положительный (за счет Н +). Возникает ЭХП, который состоит из двух компонентов: осмотического (разности концентраций ионов Н +) и электрического (разности электрических потенциалов):ΔmН + = Dj + DрН . Эта величина измерена, она равна ~0,25 В (хемиосмотическая гипотеза П.Митчела). При обратном токе протонов через канал АТФ-синтазы (разрядка мембраны) возникает 3 молекулы АТФ в полной ЦПЭ и 2 молекулы АТФ в укороченной. Таким образом внутренняя мембрана митохондрий выполняет роль сопрягающей мембраны. Теперь можно суммировать все строение ЦПЭ в виде 5 ферментативных комплексов, привязав их положение к шкале ОВП (таблица 6.3).

    Таблица 6.3

    Компоненты митохондриальной цепи переноса протонов и электронов

    ОВП, В Компоненты ЦПЭ
    -0,4 Субстраты 2 и 3 рода
    -0,3 Комплекс I (полная ЦПЭ)
    НАДН-дегидрогеназа (КФ 1.6.5.3.). 700-800 кДа, 25-30 субъединиц, 1 ФМН, 2 Fe 2 S 2 , 4-5 Fe 4 S 4
    ~0 Субстраты I рода
    Комплекс II (укороченная ЦПЭ)
    Сукцинатдегидрогеназа (КФ 1.3.5.1.). 125 кДа, 4-6 субъединиц, 1 ФАД, 1 Fe 2 S 2 , 1Fe 4 S 4 , 1 Fe 3 S 4 , 2 убихинона, 1 гем цитохрома b
    Комплекс III (обе ЦПЭ)
    Убихинол-цитохром с -редуктаза (КФ 1.10.2.2.). Около 400 кДа, 11 субъединиц, 2 Fe 2 S 2 , 2 гема цитохрома b , 1 гем цитохрома с 1
    +0,3 Комплекс IV (обе ЦПЭ)
    Цитохром с -оксидаза (КФ 1.9.3.1.). Около 200 кДа, 8-13 субъединиц, 2 Cu, 1 Zn, 1 гем цитохрома а и 1 гем цитохрома а 3
    Комплекс V (обе ЦПЭ при сопряжении дыхания и фосфорилирования)
    Н + -транспортирующая АРФ-синтаза (КФ 3.6.1.34.). Больше 400 кДа, 8-14 субъединиц
    +0,8 Кислород

    Полная ЦПЭ - 1,3,4 и 5 комплексы, укороченная ЦПЭ – 2,3,4 и 5 комплексы.

    В англоязычной литературе указывается, что на каждую пару электронов, переносимых от НАДН в межмембранное пространство выталкивается 10 протонов, а при окислении сукцината – 6 протонов. В результате проведенных исследований установлено, что для синтеза 1 молекулы АТФ необходимо 4 протона, 3 из которых используется для образования АТФ, а 1 протон используется для транспорта Рн, АТФ и АДФ через митохондриальную мембрану. Следовательно, если 10 протонов выталкивается в межмембранное пространство, а 4 используется для синтеза АТФ, то коэффициент окислительного фосфорилирования равен 2,5 (10/4) в полной дыхательной цепи и 1,5 (6/4) в укороченной дыхательной цепи. Однако, окончательный вывод можно будет сделать только при полной расшифровке механизма функционирования АТФ-азы.

    У некоторых морских бактерий возникновение электрохимического потенциала на мембране связано с возникновением ΔmNa, что определяет синтез АТФ, создание солевых градиентов и движение жгутиков.

    Дыхательный контроль – это регуляция скорости переноса электронов по дыхательной цепи отношением АТФ/АДФ . Чем меньше это отношение (преобладает АДФ), тем интенсивнее идет дыхание (это обеспечивает реакцию АДФ + Рн ® АТФ). Это видно по увеличению потребления кислорода митохондриями после добавки АДФ (эксперименты Чанса) или по усиленному дыханию бегущего человека.

    Вещества, прекращающие поток электронов по дыхательной цепи ферментов, называют ингибиторами дыхания . Ротенон и амитал специфически ингибируют перенос электронов в НАДН-дегидрогеназном комплексе и таким образом предотвращают генерирование протонного градиента в 1-м комплексе. В то же время указанные ингибиторы не нарушают окисление сукцината. Антимицин А тормозит ток электронов между цитохромами b и c 1 , предотвращая синтез АТФ, сопряженный с генерированием протонного градиента в 3-м комплексе. Этот блок можно обойти добавлением аскорбата , который непосредственно восстанавливает цитохром с. Наконец, ток электронов может быть блокирован между цитохромоксидазным комплексом и кислородом под действием CN - , N 3 - и СО . В присутствии этих ингибиторов из-за блокирования тока электронов не происходит фосфорилирования, сопряженного с генерированием протонного градиента в 4-м комплексе.

    Разобщение дыхания и окислительного фосфорирования возникает при повышении проницаемости мембраны митохондрий для протонов в любом месте, а не только в канале АТФ-синтазы. При этом не создается электрохимический потенциал и энергия окисления рассеивается в виде тепла. Так действуют ионофоры (2,4-динитрофенол, валиномицин и др.). Они переносят обратно протоны через мембрану, выравнивая градиенты рН и мембранного потенциала. Лекарственные препараты (аминобарбитал ), продукты жизнедеятельности микроорганизмов, избыток тиреоидных гормонов (вызывают накопление ненасыщенных жирных кислот, являющихся ионофорами) и др. приводят к разобщению дыхания и фосфорилирования, обеспечивая гипертермию.

    На разобщении дыхания и фосфорилирования базируется терморегуляторная функция тканевого дыхания. Тканевое дыхание, протекающее в митохондриях и не сопровождающееся образованием макроэргов, называют свободным или нефосфорилирующим окислением .

    Природным разобщающим агентом является термогенин , протонный канал в митохондриях бурых жировых клеток. Бурый жир обнаружен у новорожденных и животных, впадающих в зимнюю спячку и служит для теплообразования. При охлаждении организма норадреналин активирует гормонзависимую липазу. Благодаря активному липолизу в организме образуется большое количество свободных жирных кислот, которые распадаются в результате β-окисления и в дыхательной цепи. Так как жирные кислоты одновременно открывают протонный канал термогенина, их распад не зависит от наличия АДФ, т.е. протекает с максимальной скоростью и генерирует энергию в форме тепла.

    Образованная в результате окислительного фосфорилирования в митохондриях АТФ обменивается на внемитохондриальную АДФ с помощью специальных белков транслоказ (транслоказы составляют до 6% от всех белков внутренней мембраны митохондрий).

    Гипоэнергетические состояния возникают 1) при нарушении поступления субстратов для дегидрирования (на всех этапах от пищи до матрикса митохондрий); 2) при нарушении поступления О 2 в митохондрии (на всех этапах от дыхания, связь с кислорода с гемоглобином, транспорт и пр.); 3) при нарушении мембран митохондрий, композиции липидного бислоя и ферментативных ансамблей внутренней мембраны митохондрий. Предложено вычислять энергетическое состояние клетки , вычисляя «заполнение» системы АТФ-АДФ-АМФ макроэргами. Если все три компонента представлены АТФ, то система энергетически полностью заполнена и ее энергетический заряд равен 1,0. Если же система представлена только АМФ, то ее энергетический заряд равен 0.

    Энергетический заряд клетки является важной величиной, определяющей соотношение катаболических и анаболических процессов в ней. В тканях животных важную регуляторную роль выполняет величина отношения АТФ/АДФ.

    В сутки человек потребляет в среднем 27 моль кислорода. Основное его количество (примерно 25 моль) используется в митохондриях в ЦПЭ. Следовательно, ежесуточно синтезируется 125 моль АТФ, или 62 кг (при расчете использован коэффициент Р/О = 2,5, т.е. среднее значение коэффициента фосфорилирования). Масса всей АТФ, содержащейся в организме, составляет примерно 20-30 г. Следовательно, каждая молекула АТФ за сутки 2500 раз проходит процесс гидролиза и синтеза.

    Молекулярные моторы – это ферменты, трансформирующие химическую энергию гидролиза АТФ в механическую работу (Schliwa M., 2006). В эукариотических клетках выделяют три различных класса моторов: 1) миозин; 2) кинезин и 3) динеин. Для них характерны: 1) протяженная полярная структура, вдоль которой в одном направлении перемещаются актиновые филаменты (миозин) или микротрубочки (кинезины и динеины); 2) молекулярная организация взаимодействующих субъединиц должна обеспечивать однонаправленное движение; 3) связывающие центры для АТФ и подвижных элементов локализуются в глобулярных каталитических доменах, называемых головками; 3) энергию для движения получается при гидролизе АТФ и реализуется через конформационные изменения белков (поворот головки); 5) взаимодействие субъединиц молекулярных моторов обеспечивает перемещение структур в вязкой цитоплазме. В настоящее время известны 18 классов миозинов (мышцы и др. ткани), 10 семейств кинезинов (цитозоль клеток) и 2 группы динеинов (плазма крови). Три типа моторов различаются по молекулярной массе: кинезины – 45 кДа, миозины – 100 кДа и динеины – 500 кДа. По структуре близки кинезины и миозины. Молекулярные моторы используются различными живыми организмами для клеточной активности – контракция, транспорт органелл, подвижность клеток, клеточное деление, передача информации, процессы развития и др.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то